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Introduction

In vitro methods have the potential to
replace the use of animals in many scientific
applications. However, it is vital that experi-
ments using these methods are well designed
and correctly analysed if they are to achieve
their full potential. The aim of these guide-
lines is to help to ensure that papers pub-
lished in ATLA conform to the very highest
scientific standards with respect to experi-
mental design and statistical methods.

Definition of an Experiment

An experiment is a procedure for collecting
scientific data in a systematic way in order

to maximise the chance of answering an
hypothesis correctly (confirmatory re-
search) or to provide material for the gen-
eration of new hypotheses (exploratory
research). Sometimes, an experiment is
replicated in different laboratories or at
different times, but provided that all repli-
cations involve the same scientific objec-
tive, and the data are suitably combined in
the statistical analysis, it is considered a
single experiment. Confirmatory research
will normally involve formal significance
testing, whereas exploratory research will
normally involve looking for patterns in
the data, and may not involve formal sig-
nificance testing. However, there may be
some overlap between these two types of
experiment.
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An Investigation May Involve Several
Experiments

Where two or more experiments (not replica-
tions of the same experiment) are presented
in a paper, this should be clearly indicated.
Preferably, the experiments should be
labelled by numbers or letters.

Experiments and Surveys

A �controlled� experiment is one where some
treatment or other manipulation is under
the control of the experimenter, and the aim
is to discover whether the treatment is caus-
ing a response in the experimental subjects.

In contrast, a survey is used to find associ-
ations between the effects of some variable,
which is not usually under the control of the
scientist, and some characteristic of the sub-
jects being investigated. These guidelines are
concerned with controlled experiments.

Experimental Design

A well-designed experiment will avoid bias,
and will be sufficiently powerful to be able to
detect effects likely to be of biological impor-
tance. Where it is necessary to determine
which variables, such as time, culture
medium and cell line, are most important in
influencing the results, and whether they
interact, factorial designs can be used. In
order to ensure that results are repeatable in
time or in different laboratories, experi-
ments are sometimes replicated with ran-
domised block designs, but the resulting data
must be correctly analysed (see Appendix 1).

Experiments should normally be designed
to test a clearly stated hypothesis or other
scientific objective, and should not be so
complicated that mistakes are made in their
execution. Written protocols should always
be used. Experiments should be designed so
that they can be subjected to a statistical
analysis, with the method of analysis being
planned when the experiment is designed
(though modifications may be needed, if the
results do not come out exactly as expected).

The �Experimental Unit�

Each experiment will involve a number of
experimental units, such as a cage of animals,

an animal, or a flask, dish or well of cells,
which can be assigned at random to a treat-
ment. In principle, any two experimental
units must be available to be assigned to dif-
ferent treatments. In a multiwell plate, it
may be impractical to assign each well at
random to a different treatment, so a column
of wells may all be assigned to the same
treatment. In this case, the experimental
unit is the column of wells, and the statisti-
cal analysis should normally be performed on
the data from the whole column rather than
on data from individual wells.

Randomisation

Randomisation of experimental units to
treatments is essential, because there are
often unknown sources of variation which
could bias the results. For example, there
may be edge effects in multiwell plates, and
incubators do not always have the same
environment in all locations.

Blinding

Where possible, experiments should be con-
ducted �blind� with respect to the treat-
ments, with samples coded so that their
treatment group is unknown until the data
are analysed. This is of vital importance in
any comparison between laboratories.

The Use of Formal Experimental
Designs

A range of formal experimental designs are
described in the literature, and most experi-
ments should conform to one of these. The
most common are: completely randomised,
randomised block, Latin square, crossover,
repeated measures, split-plot, incomplete
block and sequential designs.

These formal experimental designs have
been developed to take account of special fea-
tures and constraints of the experimental
material and the nature of the investigation.
Within each type of design, there is consider-
able flexibility in terms of choice of treat-
ments and experimental conditions, but
standardised methods of statistical analysis
are usually available. For example, where
experiments produce numerical data, they
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can often be analysed by using some form of
the analysis of variance (ANOVA), if neces-
sary following a scale transformation. Inves-
tigators are encouraged to state which of
these designs they have used, as this helps to
clarify exactly what has been done.

The completely randomised design is the
simplest of all designs, but it has limitations
which make it unsuitable for some in vitro
studies, though it is widely used for whole-
animal experiments. In contrast, the ran-
domised block design, with replication in
time, is widely used for in vitro experiments.
These two designs are discussed in more
detail, with examples, in Appendix 2.

Factorial Designs

Factorial experiments are ones in which a
number of independent variables, such as
culture medium and cell line, are altered
within a single experiment. Strictly, a facto-
rial �design� is really an arrangement of
treatments which can be used independently
of the formal experimental design. Thus, the
example given in Appendix 2 is of a ran-
domised block experimental design, but with
a factorial arrangement of the treatments.
The factors are the presence or absence of
12-O-tetradecanoylphorbol 13-acetate and
the presence or absence of genistine, result-
ing in a 2 × 2 factorial layout. The purpose of
such simple factorial designs is usually to see
whether the factors interact or potentiate
each other, but it also provides a way of
studying the effects of both treatments in a
single experiment.

In some situations, there are a large num-
ber of factors which might influence the
results of an experiment, such as cell line,
medium, supplements, culture conditions,
time, and the presence or absence of other
treatments. Special �fractional factorial�
designs could be used to explore which of
these have a large effect on the results, with-
out having to use excessive numbers of exper-
imental units, though a professional statisti-
cian may need to be consulted, to ensure that
the designs will be used effectively.

Determining Sample Size

Deciding how large an experiment needs to be
is of critical importance with in vivo experi-

ments, because of the ethical implications of
using animals or humans in research. With in
vitro experiments, the main constraints are
cost, resources and time, and there is usually
no serious ethical constraint. Papers involving
animals or humans in controlled experiments,
which are submitted to ATLA, should justify
the numbers of animals or people which were
used.

Two methods are available for determin-
ing sample size. The power analysis and
resource equation methods, described in
Appendix 3.

Need for Statistical Analysis

The results of most experiments should be
assessed by an appropriate statistical analy-
sis, even though, in some cases, the results
may be so clear-cut that it is obvious that any
statistical analysis would not alter the inter-
pretation. The materials and methods sec-
tion should describe the statistical methods
used in analysing the results. The aim of the
statistical analysis is to extract all the infor-
mation present in the data, in such a way
that it can be interpreted, taking account of
biological variability and measurement error.
It is particularly useful in preventing unjus-
tified claims about the effect of a treatment,
when the results could probably be explained
by sampling variation. Note that it is possi-
ble for an effect to be statistically significant,
but of little or no biological importance. The
magnitude of any significant effects should
always be quoted, with a confidence interval,
standard deviation or standard error to indi-
cate its precision, and exact p-values should
normally be given, rather than stating, say,
that p < 0.05.

Lack of statistical significance should not
be used to claim that an effect does not exist,
because this may be due to the experiment
being too small or the experimental material
being too variable. Where an effect is not sta-
tistically significant, a power analysis (see
Appendix 3) can sometimes be used to show
the size of biological effect that the experi-
ment was probably capable of detecting.

Examining the Raw Data

The raw data should be studied for consis-
tency and for any obvious typographical
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errors. Graphical methods, which are now
available in most statistical packages, are
helpful, particularly if individual observa-
tions can clearly be seen. �Outliers� should
not be discarded, unless there is independent
evidence that the observation is incorrect,
such as a note taken at the time that the
observation was recorded, expressing doubt
about its credibility. In this case, the reasons
for its exclusion should be explicitly stated. It
is sometimes useful to do the statistical
analysis with and without the suspect data,
to see whether this alters the conclusions.

Methods of Statistical Analysis

The method of statistical analysis will
depend on the purpose of the study, the
design of the experiment, and the nature of
the resulting data. Categorical or qualitative
data, where counts and proportions are to be
compared, will be analysed by using different
methods from those used with quantitative
or measurement data. In these guidelines, it
is only possible to give a brief outline of the
main methods which are recommended for
papers submitted to ATLA.

Statistical Analysis of Quantitative
Data and Comparison of Means or
Medians

Quantitative data are usually summarised in
terms of the mean, �n� (the number of sub-
jects), and the standard deviation as a meas-
ure of variation. The median, �n�, and the
inter-quartile range may be preferable for
data which are clearly skewed. The statisti-
cal analysis is usually used to assess whether
the means, medians or distributions of the
different treatment groups differ. More
rarely, and not discussed here, the aim will
be to compare the variation within the dif-
ferent groups.

Quantitative data can be analysed by
using �parametric� methods, such as the t
test or the ANOVA, or by using non-para-
metric methods, such as the Mann-Whitney
test. Parametric tests are usually more ver-
satile and more powerful, so are preferred,
but depend on the assumptions that the vari-
ances are approximately the same in each
group, that the residuals (i.e. deviation of
each observation from its group mean) have

a normal distribution, and that the observa-
tions are independent of each other. The first
two of these assumptions should be investi-
gated as part of the analysis, by studying the
residuals (see Appendix 2). The last one
depends on good experimental design. If
these assumptions are not met, it may be
possible to transform the data in such a way
that they are met.

Transformations

A scale transformation can often be used
prior to a parametric analysis, if the assump-
tions listed above are not met, though most
parametric methods are robust against mod-
erate departure from the assumptions. A log
transformation is often appropriate when
the dependent variable is a concentration.
This cannot be less than zero, and may have
several moderately high observations, but
may have a small number of very high val-
ues. Taking logs (one can be added to each
observation, if some are zero) often nor-
malises the data. Where data are expressed
as proportions or percentages, such as the
proportion of stained cells in a sample of
cells, and when many of the observations are
less than 20% or more than 80%, the data
distribution will be skewed. In this case, a
suitable transformation is the logit which is
loge(p/[1 � p]), where p is the proportion, or
an angular transformation, as discussed in
many textbooks. These stretch out the val-
ues that are less than 0.2 or more than 0.8,
so normalising the data.

Counts such as the numbers of cells in a
haemocytometer square, can sometimes pro-
duce data which can be analysed by the
ANOVA. If the mean count is low, say less
than about five, then the data may have a
Poisson distribution. This can be trans-
formed by taking the square root of the
observations. However, if the mean count is
reasonably high, no transformation may be
needed.

Parametric Statistical Analysis

Student�s t test should not be used when
more than two treatment groups are to be
compared. If there are several groups, it
lacks power, and multiple testing increases
the chance of a false-positive result. Where
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there are two or more groups, and particu-
larly with randomised block or more-com-
plex designs, the ANOVA should be used.

The ANOVA is usually used initially to
test the overall hypothesis that there are no
differences among treatment means. If no
significant differences are found, further
comparisons of means should not normally
be done. Where the ANOVA results are sig-
nificant, say at p < 0.05, and there are several
groups being compared, either post hoc com-
parisons or orthogonal contrasts can be used
to study differences amongst individual
means. A range of post hoc comparison meth-
ods are available, which differ slightly in
their properties. These include Dunnett�s
test for comparing each mean with the con-
trol, and Tukey�s test, Fisher�s protected
least-significant difference test, the New-
man-Keuls test, and several others for com-
paring all means. Authors should state
which tests have been used. Note that all
these tests use the pooled within-group stan-
dard deviation obtained from the ANOVA.
The ANOVA followed by individual t tests to
compare means, not using the pooled stan-
dard deviation, is not acceptable, because
each test will lack power. Orthogonal con-
trasts can be used to compare groups of
means or, when dose levels are equally
spaced on some scale, to assess linearity and
deviations from linearity of response to the
dose.

Where there are several dose levels,
assessing a dose�response relationship by
using regression, or orthogonal contrasts
(where appropriate), should be considered in
preference to comparing each dose level with
the control.

The best estimate of the pooled standard
deviation is obtained as the square root of
the error mean square in the ANOVA. In
fact, this is the only estimate of the standard
deviation which is available for a randomised
block design. Thus, when presenting means
either in tables or graphically, this estimate
of the standard deviation should be used. It
will, of course, be the same for each group.

Several Dependent Variables

Where there are several dependent variables
(characters), each can be analysed sepa-
rately. However, if the variables are corre-
lated, the analyses will not be independent of

one another. Thus, if sampling variation
resulted in a false-positive or false-negative
result for one character, the same thing may
happen for another character. A multivariate
statistical analysis, such as principal compo-
nents analysis, should be considered in such
cases (1).

Non-parametric Tests

Several of these methods, such as the Mann-
Whitney test, replace the individual observa-
tions by their ranks, resulting in the loss of
some information; hence, these methods
often lack power in situations where para-
metric tests are appropriate, but they may be
more powerful in situations where the para-
metric test is not appropriate.

There are several non-parametric tests for
equality of population means or medians.
The Wilcoxon rank sum test and the Mann-
Whitney test are equivalent. These are the
non-parametric equivalents of the two-sam-
ple t test. The Kruskal-Wallis test is the non-
parametric equivalent of the one-way
ANOVA, where several groups are to be com-
pared, and a non-parametric equivalent of a
post hoc comparison can be used, provided
that the overall test is significant (2). A ver-
sion of the Wilcoxon test can also be used as
the non-parametric version of the paired t
test. The Friedman test is the non-paramet-
ric equivalent of the randomised block or
repeated measures ANOVA. There are sev-
eral other non-parametric tests which are
appropriate for particular circumstances.

Correlation

The product�moment correlation is the com-
monest method for assessing the strength of
linear relationship between two numerical
variables, X and Y. Both X and Y are
assumed to be subject to sampling variation.
It does not assume that variation in X causes
variation in Y. Where the data are shown
graphically, regression analysis is sometimes
used to give the best-fitting straight line.
However, there are two lines that can be fit-
ted, namely, the regression of X on Y and the
regression of Y on X. Both should normally
be plotted, if there is no suggestion of a
causal relationship. Note that a change of
scale will alter the correlation, and that a
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non-linear relationship will result in a low
correlation, even if the two variables are
strongly associated. In such circumstances
the correlation of ranks may be more appro-
priate. There are several other forms of cor-
relation, depending on whether the variables
are measurements or ranks, or are dichoto-
mous.

Regression

Regression analysis can be used to quantify
the relationship between a variable X, which
is presumed to cause changes in a variable Y.
The X variable is assumed to be measured
without error. Linear regression can be used
to fit a straight line of the form Y = a + bX,
where a and b are constants which are esti-
mated from the data by using a method
called least-squares. Quadratic regression
can be used to fit a curve to the data points.
Many other types of curve can be fitted, some
of which have useful biological interpreta-
tions.

Regression analysis and the ANOVA are
closely related so that a regression, say of
response on dose level, can sometimes be
included as part of the ANOVA, by using
orthogonal polynomials (3).

The most usual statistical test in regres-
sion analysis is of the null hypothesis that
there is no linear relationship between X and
Y. A test to determine whether there is a
quadratic relationship, would be a test of
whether a curve gives a significantly better
fit than a straight line.

Categorical Data

Categorical data consist of counts of the
number of units with given attributes.
These attributes can be described as �nom-
inal� when they have no natural order,
such as different cell lines. They are
described as ordinal, when they have a nat-
ural order, such as low, medium and high
dose levels, which may also be defined
numerically. Such categorical data are
often presented in the form of tables or,
possibly, as proportions or percentages.

Proportions or percentages should be
accompanied by a confidence interval or
standard error, and �n� should be clearly
indicated. The usual method of comparing

two or more proportions is a contingency
table χ2 analysis, which tests the null
hypothesis that rows and columns are inde-
pendent. The method is only accurate if
none of the expected values are less than
five. Where some cells have very small
numbers, Fisher�s exact test should be
used. Other acceptable methods of analysis
are available, and are described in various
texts.

Presentation of the Results

Where individual means are quoted, they
should be accompanied by some measure of
variation. If the aim is to describe the varia-
tion amongst individuals which contribute to
the mean, the standard deviation should be
given. Avoid using the ± sign. It is better to
use a designation such as �9.6 (SD 2.1)�,
because this avoids any confusion between
standard deviation and standard error.
Where the aim is to show the precision of the
mean, a confidence interval should be used
(preferably) or a standard error (for example,
9.6 SE 1.2), but in this case �n� must also be
indicated. Where two means are being com-
pared, the difference between them should
be quoted, together with a confidence inter-
val.

Non-parametric data should quote medi-
ans and the inter-quartile range or some
other estimate of variation. Where propor-
tions or percentages are given, a standard
error or confidence interval and �n� should
also be given. Significance levels should not
be quoted without indicating the size of an
effect, as statistical significance and biologi-
cal importance are not synonymous.

Computers sometimes give outputs with
excessive numbers of digits. These should be
rounded to take account of the precision of
the raw data.

Graphical Presentation of Data

Graphs showing individual points rather
than error bars are preferred. Where error
bars are shown on graphs or bar diagrams,
there should be a clear indication of whether
these are standard deviations, standard
errors or confidence intervals, and the num-
ber of observations should be clearly indi-
cated in the text or figure caption.

432                                                                                                               M.F.W. Festing



References and Further Reading

There are numerous textbooks on statistics
and experimental design. Most are directed
at specific disciplines such as agriculture,
psychology or clinical medicine, but the
methods are general and applicable to in
vitro experiments. A few are listed below,
some of which are general textbooks, while
others are more specialised.
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This is the most common design with animal
experiments, but is less common with in
vitro experiments. The experimental unit is
often an animal or a dish or well of cells,
which can be assigned at random to a treat-
ment group. There can be any number of
experimental units, which should be chosen
to be as homogeneous as possible. Typically,
the experiment will be performed at one time
in one location or, alternatively, time and
location will be assumed to have negligible
effects on the experimental material. The
design can accommodate any number of
treatment groups, and unequal numbers in

each group usually present no problem. It
can usually be analysed by using the analysis
of variance (ANOVA), provided that the data
are appropriate. Where this is not the case,
non-parametric methods can be used. The
disadvantage of the design is that it cannot
take account of variation among the experi-
mental units over time or in different labo-
ratories. Table I shows the red blood cell
(RBC) counts of mice administered a test
compound �X� at various dose levels. The
mice were assigned to the treatments at ran-
dom, with the restriction that four mice were
assigned to each dose level. Dose levels were
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Appendix 1

The Completely Randomised Design

Figure 1: Plot of red blood cell counts against dose level of compound �X� to show
scores for each animal

Note that some �jitter� has been added on the X-axis, so that the points do not sit on top of each
other.
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equally spaced on an arithmetic scale. The
aim of the experiment was to determine
whether the test compound affected RBC
counts in a dose-dependent manner.

The statistical analysis has been per-
formed by using the MINITAB statistical
package (1). Dedicated statistical packages
should generally be used in preference to

spreadsheets. The first step is to look at the
raw data. Figure 1 is a plot of the individual
observations against dose level. There is
some visual evidence that the RBC counts
are lower at the higher dose levels. As the
data are quantitative, the ANOVA can be
used to test the null hypothesis that there is
no difference among dose level groups, pro-
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Table I: Red blood cell counts (units) in mice given various doses of a
test compound

Dose level

500 1000 1500 2000 2500
0 mg/kg mg/kg mg/kg mg/kg mg/kg

Mouse 1 9.50 9.44 9.06 9.40 8.10 9.60
Mouse 2 8.52 9.32 8.90 9.40 8.10 8.07
Mouse 3 9.20 9.55 9.37 8.17 7.82 8.45
Mouse 4 9.09 9.56 9.01 9.27 7.83 7.77

Figure 2:  Normal probability plot of residuals for data in Table I

This should be a straight line if the residuals have a normal distribution. The outlier at the
highest dose level shows up clearly. Although there is some departure from normality, it does
not appear to be sufficiently serious to invalidate a parametric statistical analysis.
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vided that the residuals have a normal dis-
tribution and the variation is approximately
the same in each group. Figure 2 is a normal
probability plot of the residuals (i.e. the devi-
ations from the group means), provided as an

option when using MINITAB. This will be a
straight line if the residuals have a normal
distribution. Some judgement is necessary in
deciding whether this is a sufficiently good
approximation to a straight line to be accept-
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Table II: One-way analysis of variance (ANOVA) for the data in Table I, with post
hoc comparisons with Dunnett�s test, obtained by using the MINITAB
statistical package

One-way ANOVA: red blood cell (RBC) versus dose

ANOVA for RBC
Source DF SS MS F P
dose 5 5.850 1.170 5.64 0.003
Error 18 3.734 0.207
Total 23 9.584

Individual 95% CIs for mean
based on pooled SD

Level n Mean SD
0 4 9.0775 0.4101
500 4 9.4675 0.1124
1000 4 9.0850 0.2014
1500 4 9.0600 0.5965
2000 4 7.9625 0.1588
2500 4 8.4725 0.8015

Pooled SD = 0.4555 7.70 8.40 9.10 9.80

Dunnett�s comparisons with a control

Family error rate = 0.0500
Individual error rate = 0.0129

Critical value = 2.76

Control = level (0) of dose

Intervals for treatment mean minus control mean

Level Lower Centre Upper
500 �0.4994 0.3900 1.2794
1000 �0.8819 0.0075 0.8969
1500 �0.9069 �0.0175 0.8719
2000 �2.0044 �1.1150 �0.2256
2500 �1.4944 �0.6050 0.2844

�2.0 �1.0 0.0 1.0

DF = degrees of freedom; SS = sum of squares; MS = mean square; F = variance ratio; P =
probability; CI = confidence interval; SD = standard deviation

( * )

( * )

( * )

( * )
( * )

( * )
( * )

( * )

( * )
( * )

( * )



able. In this case, the deviation is not seri-
ous, though the outlier at the highest dose
level stands out. This observation should be
checked to ensure that it is correct. Figure 3
is a plot of fits (i.e. group means) versus
residuals (deviations from group means), to
see whether the variation is approximately
the same in each group. Again, such a graph
should be an available option with all good
statistical packages. In this case, the groups
with most variation seem to be those with
middle dose levels. The absence of any clear-
cut pattern suggests that most of the varia-
tion is random, and does not increase as the
means increase. The two plots of Figures 2
and 3 suggest that the assumptions for a
parametric analysis are reasonably well met.
The results of the ANOVA are shown in
Table II, with Dunnett�s test used for the
post hoc comparisons. The ANOVA table has
a p-value of 0.003 for the null hypothesis
that there are no differences between dose
level groups. The dose levels, n and individ-
ual means and standard deviations are
shown with individual 95% confidence inter-

vals (CI) for each mean shown graphically.
The pooled standard deviation is 0.4555
units. The meaning of abbreviations such as
DF, SS and MS will be given in the reference
manual for each software package, or in sta-
tistical texts.

The Dunnett�s test comparisons of each
mean with the control level have a family
error rate of 0.05. That means that 5% of
similar experiments would be expected to
give one or more false-positive results,
when in fact there is no real difference
between the groups. The individual error
rate is 0.0129. This is less than 0.05,
because of the need to take account of the
fact that five tests have been conducted.
Had each comparison been judged �signifi-
cant� with p ≤ 0.05, the chance of a false-
positive conclusion for the whole experi-
ment would have been much higher than
0.05. The lower part of the table shows the
difference between the mean of each group
and the control mean (�Center�) and the
upper and lower 95% confidence intervals
for this difference. If the confidence inter-
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Figure 3:  Plot of fits (group means) versus residuals for RBC data

There is no good evidence from this plot that the variation differs between groups. In particu-
lar, the variation does not seem to be greater in groups with the highest means.
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val does not cover a difference of zero, it
will be concluded that the difference is sig-
nificant at p < 0.05. In this case, only the
2000 dose level differs significantly from
the control level by �1.11 units, with a 95%
confidence interval of between �2.00 and
�0.22 units (rounding to three significant
digits).

However, this analysis does not really
answer the question of whether there is a
dose-related change in the RBC counts. All
it shows is that the means differ and that
one of the dose levels differs from the con-
trol. A regression analysis would really be
more appropriate. Table III shows the
MINITAB output from a regression analy-
sis of RBC counts on dose levels. This pro-
duces an ANOVA table which tests the null
hypothesis that there is no relationship
between dose level and RBC counts. This
hypothesis will be rejected at p = 0.003, so
it would be legitimate to conclude that

there is a significant dose-related effect.
Note that in the ANOVAs of both Tables II
and Table III, the total sum of squares (SS)
is the same (9.584). In fact, the ANOVA and
regression are closely related. In Table II,
there are five degrees of freedom (DF) asso-
ciated with dose levels. One of these can be
used to test whether there is a linear trend.
The SS for this will be 3.2702, as shown in
the ANOVA table of Table III. This is
equivalent to using orthogonal polynomials
to test whether there is a linear trend. It is
possible to use another DF to test whether
a quadratic curve would give a better fit
than a straight line. In this case, it does not
(details not shown). At the top of Table III,
the regression equation is shown as RBC =
9.39 � (0.000432 × dose). This says that the
intercept (RBC count when dose is zero) is
9.39 units, and that it declines by 0.000432
units for every unit increase in the dose
level. The R-Sq (adj) value indicates that

Table III: Regression analysis of the red blood cell (RBC) data of Table I

Regression analysis: RBC versus dose

The regression equation is RBC = 9.39 � (0.000432 × dose)

Predictor Coef SE coef T P
Constant 9.3945 0.1939 48.46 0.000
dose �0.0004323 0.0001281 �3.38 0.003

S = 0.5357     R-Sq = 34.1%      R-Sq(adj) = 31.1%

Analysis of variance

Source DF SS MS F P
Regression 1 3.2702 3.2702 11.39 0.003
Residual error 22 6.3139 0.2870
Total 23 9.5842

Unusual observations

Obs dose RBC Fit SE fit Residual St resid
21 2500 9.600 8.314 0.194 1.286 2.58R

R denotes an observation with a large standardised residual.

DF = degrees of freedom; Coef = coefficient; SE coef = standard error of the coefficient ; T =
Student�s T; P = probability; SS = sum of squares; MS = mean square; F = variance ratio;
SE fit = standard error of fit; St resid = standard residual.
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31.1% of the variation in RBC counts is
associated with a linear variation in the
dose level.

At the very bottom of the table there is a
note about unusual observations, in this
case, number 21, which is the very high
observation in the top dose group shown in
Figure 1.

Finally, it may be appropriate to present a
graph of the results with the best fitting
straight line, as shown in Figure 4. This also
shows the 95% confidence intervals for the
mean at each dose level (inner dotted lines)
and the 95% prediction level for individual
points (i.e. 95% of observations should fit
within the outer dotted lines).

Figure 4: Regression plot of the red blood cell (RBC) count scores versus dose
level, showing the best-fitting straight line

Regression, = 95% confidence interval, = 95% prediction interval for
individual points.

RBC = 9.39452 � 0.0004323 dose, S = 0.535721, R-Sq = 34.1%, R-Sq(adj) = 31.1%.
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This is a common design for in vitro studies
with the experiment being replicated in time
and/or in different laboratories. A �block� is
like a �mini-experiment�, with all treat-
ments being represented.

Table IV shows the results of an experi-
ment in which four flasks of a transgenic cell
line were assigned either to a control medium,
medium with 12-O-tetradecanoylphorbol 13-

acetate (TPA; T), medium with genistine (G),
or medium with both T and G. This is a facto-
rial arrangement of the treatments. Cultures
were scored for the number of cells showing a
particular phenotype (real data, but dis-
guised). The �mini-experiment�, usually
called a block or a replicate, was repeated four
times on different days, providing 16 observa-
tions. The aim was to find out whether T and

Appendix 2

The Randomised Block Design

Table IV: Data used to illustrate the method of statistical analysis of a ran-
domised block factorial experimental design

Treatmenta Block 1 Block 2 Block 3 Block 4

0 100 81 62 128
T 514 187 294 558
G 35 82 148 241
T+G 120 84 134 1011

a0 = medium alone, T = medium + 12-O-tetradecanoylphorbol 13-acetate; G = medium +
genistine; T+G = medium + TPA and genistine.

Figure 5:  Dotplot of raw data for the randomised block design

Blocking has been ignored for this plot, and treatments have been coded 1 (control) to 4. Note
that the variation in group 2 seems to be greater than that in groups 1 and 3, and there seems
to be an outlier in group 4.
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G affected the results, and whether they
interacted or potentiated each other. There
was considerable variation between the
blocks, with the values in block 3, for example,
being about half of those in block 4. Such dif-
ferences are common with in vitro studies,
and they must be removed in the statistical
analysis, if they are not to completely obscure
the treatment differences. Note that the min-
imum block size is the same as the number of
treatments, but it can be larger. For example,
in the above experiments, there could have
been eight flasks in each block, with two being
assigned to each treatment.

The first step in an analysis should be to
study the raw data. Figure 5 shows a dotplot
of each treatment group, ignoring the block-
ing factor and coding the treatments simply
as 1�4. This suggests that there may be an
outlier in group 4. This should be checked, to
ensure that it is not a typographical error,
though in this case it is a valid observation.
The dotplot also suggests that groups with
low mean values appear to be less variable
than groups with higher mean values. This
could present a problem, as the ANOVA
assumes approximately equal variation in
each group.

Table V:  Analysis of variance (ANOVA): LogScore versus replicate, T and G

Factor Type Levels Values
Replicate random 4 1 2 3 4
T fixed 2 1 2
G fixed 2 1 2

ANOVA for LogScore

Source DF SS MS F P
Replicate 3 0.74028 0.24676 3.91 0.049
T 1 0.77214 0.77214 12.24 0.007
G 1 0.04627 0.04627 0.73 0.414
T × G 1 0.09994 0.09994 1.58 0.240
Error 9 0.56775 0.06308
Total 15 2.22637

Means

T N LogScore
1 8 1.9773
2 8 2.4166

G N LogScore
1 8 2.2507
2 8 2.1432

T G N LogScore
1 1 4 1.9520
1 2 4 2.0025
2 1 4 2.5494
2 2 4 2.2838

T = medium + TPA; G = medium + genistine; T + G = medium + TPA and genistine.
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The next step is usually to study the resid-
uals plots, as was done with the previous
example. Figures 6 and 7 show the two plots.
Figure 6 should be a straight line, if the
residuals have a normal distribution, but it is
slightly curved, and the outlier stands out.

Figure 7 suggests that low fitted values are
associated with low variation in the residu-
als, though the effect is not very marked.
Some judgement is necessary in deciding
whether these departures are sufficiently
serious to reject the ANOVA based on these

�100          0         100         200       300        400        500       600       700
fitted value

re
si

du
al

400

300

200

100

0

�100

�200

Figure 6:  Residuals versus fits plot for the data in Table IV

Note that the variation seems to increase with higher fitted values.
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Figure 7:  Normal probability plot of the residuals for the data in Table IV
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raw data. Generally, departures from the
assumptions decrease the power of the
experiment, resulting in fewer effects being
declared significant. In this case, data were
transformed to the log10 of the scores. The
residuals plots were again studied (not
shown), and it was concluded that the
assumptions for the ANOVA were met on
this scale. Even the outlier in group 4 was no
longer obviously an outlier on the logarith-
mic scale.

The results of the ANOVA, as produced by
MINITAB, are shown in Table V. Note first
that the variation between the blocks or
replicates has been removed in the analysis.
There is no significant interaction between T
and G. In other words, the response to G
does not depend on whether the cells have
first been treated with T, and only the
response to T is statistically significant at p
= 0.007 (it was 0.034 on the untransformed
scale). On the logarithmic scale, treating the
cells with T increased the score by 0.44 units.

The pooled standard deviation is obtained as
the square root of the error mean square, i.e.
the square root of 0.06308 = 0.25 units. A
confidence interval for difference between
cells receiving and not receiving T can be
constructed, as described in most text books
as ±t0.05 × SD/root(n). In this case, t is based
on 9 degrees of freedom (see ANOVA table),
and at the 0.05 level it is 2.262. Thus, the
95% confidence interval is 0.44 ± 2.262 ×
0.25/3 = 0.44 ± 0.18. So the 95% confidence
interval for the true effect of adding T is an
increase of between 0.26 and 0.62 units on
the logarithmic scale. Note that the means
on the log scale can be back-transformed to
the original scale to provide the geometric
means, but the standard deviation and dif-
ferences between means cannot be meaning-
fully back-transformed. If necessary, the
analysis can be conducted on the logarithmic
scale, and the data can be presented on the
original scale, provided that this is clearly
indicated.
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There are two main methods for determining
sample size, as noted in the guidelines. The
power analysis method is most appropriate
for relatively simple but expensive experi-
ments, such as clinical trials and some ani-
mal and in vitro experiments. It is particu-
larly useful for experiments likely to be
repeated several times, such as drug safety
screening. However, it is not always possible
to use the method, as it requires a knowledge
of the standard deviation of the character of
interest, and some estimate of the effect size
deemed to be of biological importance. This
information may be difficult to obtain for
one-off experiments, for complex experimen-
tal designs, or for ones involving many
dependent variables, such as those using
microarrays. In such circumstances, the
resource equation method, which depends on
the law of diminishing returns, may be use-
ful.

Power analysis

This method depends on the mathematical
relationship between: the effect size of inter-
est; the standard deviation; the chosen sig-
nificance level; the chosen power; the alter-
native hypothesis; and the sample size. Any
five of these can be fixed, and this will deter-
mine the sixth one. The formulae are com-
plex, but software is now available for doing
the calculations.

The first step is to decide the type of sta-
tistical analysis that will be used to analyse
the experiment. Briefly, the analysis will
depend on the aims of the experiment, the
number of treatments, and type of data
which will be produced. If there are two
groups with quantitative data, the results
could be analysed by using Student�s t test,
assuming that the data are appropriate. If
the aim is to compare the proportions of dead
and alive cells in two or more groups, a χ2

test could be used. If a dose-response rela-
tionship is being studied, regression analysis
could be used.

The second step is to decide the effect size
to be detected. For example, how much of a
reduction in neutral red uptake in a cell cul-

ture or in RBC levels in a mouse experiment
is of biological significance? A 10% reduction
may not be of much interest, whereas a 50%
reduction may be. Where several different
characters are being studied (for example,
neutral red uptake, total protein in a well,
and a cell count), the calculations should
concentrate on the most important of these.
With categorical data (dead/alive), the differ-
ence in two or more proportions that is likely
to be of biological importance must be
decided.

The third step is to estimate the standard
deviation among experimental units, assum-
ing quantitative data. As the experiment has
not yet been conducted, this has to come
from previous experiments or from the open
literature. Unfortunately, it may be difficult
to get an accurate estimation of the standard
deviation, and small differences in standard
deviation may translate into quite large dif-
ferences in the estimated sample size. If two
or more proportions are to be compared, the
standard deviation is a function of the pro-
portions, so does not need to be separately
estimated. Note that sometimes the effect
size needs to be specified in standard devia-
tion units by dividing the effect by the stan-
dard deviation.

The fourth step is to decide on the signifi-
cance level to be used. Somewhat arbitrarily,
this is often set at 0.05, though other levels
can be chosen.

The fifth step is to decide what power the
experiment should have. This is the chance
that the experiment will be able to detect the
specified effect and show it to be statistically
significant at the specified significance level.
One minus the power is the chance of a false-
negative result. A power of somewhere
between 80% and 90% is often chosen. How-
ever, in in vitro tests on the safety of some
vaccines, where a false-negative result would
have serious consequences, a power of 99%
may be specified. Thus, power should be cho-
sen according to the consequences of failing
to detect the treatment effect.

Next, the alternative hypothesis usually
has to be considered. The null hypothesis is
usually that there are no differences among

Appendix 3

Methods for Determining Sample Size
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treatments, and the alternative is often that
there are differences. However, sometimes
there are good biological reasons as to why
the difference can only occur in one direc-
tion. If this is the case, a �one-sided� statisti-
cal test would be used.

Finally, these pieces of information need to
be put together in order to obtain an esti-
mate of the required sample size. There are a
number of dedicated programs which can be
used (2), and several recent versions of sta-
tistical software provide some power calcula-
tions. For a simple comparison of two sam-
ples by using the t test or for comparing two
proportions, there is free software on the
Web (search for �statistical power� by using
a search engine such as www.google.com).

The resource equation

There are occasions when it is difficult to use
a power analysis, because there is no infor-
mation on the standard deviation and/or
because the effect size of interest is difficult
to specify. The �resource equation� method
(3) is based on the law of diminishing
returns. Once an experiment exceeds a cer-
tain size, adding more experimental units
gives very little more information. An appro-
priate size can be roughly determined by the
number of DF for the error term in the
analysis of variance or t test given by the
formula:

E = N � T � B

where E, N, T and B are the error, total,
treatment and block degrees of freedom in
the ANOVA. The suggestion is that E should
be somewhere between 10 and 20. Thus, for
the data given in Table I, E = 23 � 5 = 18,
because there are 24 total observations and
six dose levels, and for the data given in
Table IV, E = 15 � 3 � 3 = 9, because there
are sixteen total observations, four treat-
ment combinations and four blocks. Thus,
the first of these two experiments is judged
to be about an appropriate size, and the sec-
ond is a bit small, although the blocking will
have increased precision quite considerably,
so the experiment is probably of an appropri-
ate size. Where there is no ethical constraint
and where experimental units are relatively
inexpensive, as is the case with many in vitro
experiments, the upper limit can be substan-
tially increased.
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1) Is/are the aim(s) of the experiment(s)
clearly stated?

2) Have you indicated clearly how many
separate experiments (not replications of
the same experiment) are being reported,
and have these been appropriately
labelled �Experiment 1�, �Experiment
2�, etc.?

3) The following points refer to each indi-
vidual experiment.
a) The �experimental unit� is the entity

(such as a culture dish) which can be
assigned to a treatment. It is the unit
of randomisation, and for the statis-
tical analysis. Is the experimental
unit in your experiment clearly indi-
cated?

b) Have you described the method of
randomisation?

c) State whether coded samples and
�blinding� have been used where pos-
sible and appropriate.

d) Have you indicated the type of exper-
imental design used, such as com-
pletely randomised, randomised
block, etc., and whether or not you
have used a factorial treatment struc-
ture? 

e) If using animals or humans, have you
indicated how an appropriate sample
size was determined?

f) Have you described and justified, in
the Materials and Methods section,
the statistical methods used? Uncom-
mon statistical methods should be ref-
erenced.

g) If you have used parametric statistical
methods (for example, t test or analy-
sis of variance [ANOVA]), have you
determined that the assumptions of
approximate normality of residuals
and equality of variation are accept-
able, given that these procedures can

tolerate some departure from these
assumptions?

h) When comparing several means with
an ANOVA, have you indicated the
post hoc comparison or other methods
you have used?

i) When presenting means and propor-
tions, have you indicated �n� and
either the standard deviation (SD),
standard error (SE) or confidence
interval (CI), and have you chosen the
most appropriate of these?

j) When using non-parametric methods,
have you indicated the medians, or
other indication of location, and some
measure of variation, such as the
inter-quartile range?

k) Where effects are statistically signifi-
cant, have you also shown their mag-
nitude and commented on their bio-
logical relevance?

l) Have you quoted actual p-values,
rather than using < signs?

m) When effects are not statistically sig-
nificant, have you assumed, incor-
rectly, that this means that the treat-
ment(s) have no effect? Consider
using a power analysis to indicate the
magnitude of treatment effect that
the experiment could probably have
detected.

n) When using correlation, have you
graphed the data and considered pos-
sible effects of scale changes. If the
graph is presented, have you shown
lines giving both the regression of X
on Y and of Y on X?

o) Are all the diagrams necessary and
informative? Simple bar diagrams
might be better presented as a table
giving numerical data. Also, have you
considered using scatter diagrams
showing individual points, rather
than error bars? 

Appendix 4

Checklist for experimental design and statistical analysis of
papers submitted to ATLA
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