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CHAPTER 1

The Assessment
of Individuals

The Critical Role and
Fundamentals of Measurement

he importance of measurement in our daily lives and in research in

education and the social sciences cannot be overstated. How well a

construct is measured is critical in so many different ways. Consider the
importance of measuring the height and weight of a newborn baby. These are
general indicators of the health of the baby. If a measurement is unusual, then
actions are taken to bring the measurement more in line with what is considered
typical. Consider any college or university course taken. Achievement tests to deter-
mine how much students have mastered the course content are the norm. If the test
is flawed in some way, this may have a negative impact on GPA, which would have
further consequences. Consider tests of ability that are used for streaming junior
high school students into a university-bound or non-university-bound set of
courses in high school. Based on the test score, a student’s life is affected. Consider
a job interview where a panel of judges rates applicant responses to interview
questions. Based at least partly on their ratings (measurement of applicant perfor-
mance in the interview), a job offer may or may not be forthcoming. Consider how
carefully politicians pay attention to popularity polls. Their future careers rest on
how this information is collected and portrayed.

On the research side of things, if the measures used in the study that is being
carried out are questionable, the research is not going to be published. If a poor
measure of job satisfaction is used, then the likelihood of it being related to other
variables of interest to the researcher (such as intentions to quit the organiza-
tion) is also poor; the analyses are less likely to be able to detect the relationships
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hypothesized. The measure that is being used in research should exactly measure
the construct of interest. For example, in a measure of job satisfaction, there may
be a couple of items that actually measure knowledge of organizational policies.
If this is the case, then that measure is impure or contaminated.

Measurement is used all the time in our daily lives and it is an integral part of the
research process. Knowledge about measurement—how to correctly assess constructs,
how to critically examine others’ use of measures, and how to be a smart consumer of
published tests—is an important skill of a social scientist. This book is written for that
reason. At the end, you should know how to construct a test, how to evaluate a test, and
how much faith you can put in the scores of any given instrument.

Measurement in the Physical Sciences

Those of us in the social sciences are often envious of the precision with which
physical scientists are able to measure their constructs. There is not a lot of quar-
reling about the temperature, speed, height, weight, luminance level, or color of a
given substance or event. The instruments that have been designed to measure such
constructs have been built to be reliable and are usually calibrated on a regular basis
to ensure the accuracy of the values that they produce. As long as the individual
using the instrument knows how to use it and knows how to interpret the values,
there is no problem in the measurement aspect of the work.

Measurement in the Social Sciences

On the other hand, social scientists are often dealing with ambiguous constructs
such as political activism, delinquency, leadership, intelligence, personality, creativ-
ity, depression, anxiety, and so forth. Not only is there disagreement on how these
are measured but also, in many cases, there is no overall agreement on what is
meant by the construct itself. Thus, social scientists battle on two fronts. The first
thing to do when preparing to develop or use a test is to be absolutely clear about
what it is that you want to measure. This is called the conceptual definition of
the construct. For example, if you want to measure creativity, you must first
define for yourself, and therefore for all who will read your work, what you mean
by creativity. As a creativity test consumer, you will first want to determine how
much you agree with how the test author defined creativity. If you don’t agree, then
don’t purchase the test.

Even after leaping the first hurdle of getting an audience to agree with a concep-
tual definition, social scientists must then convince them that how that construct
is measured is an accurate representation of the construct. That is, translating the
conceptual definition into an operational definition (in measurement, this usually
means creating items to assess the construct) requires careful and methodical work.
Two chapters are devoted to this exercise—one to creating items and the other to
creating responses to those items.
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Thus, measurement in the social sciences is fraught with pitfalls and yet is such a
critical skill that it is well worth cultivating. Before moving on to introduce the topic
of construct definition, a review of some of the highlights in the history of individ-
ual difference measurement, or, more technically, psychometrics, is presented.

Historical Highlights of Measurement

Assessment of individual differences has a very long history. The Chinese civil
service in 2200 B.C. was the first recorded group to use formal testing procedures
for selection and performance appraisal (Bowman, 1989). This system was the
model for British, French, and German governments in the 19th century. The
ancient Greeks also used individual difference testing (Doyle, 1974).

Measurement and testing, however, received a great boost in the 19th century due
to the rising interest in several countries about various aspects of individual differ-
ences. The controversial and revolutionary writings of the English naturalist Charles
Darwin; the work in the experimental psychology laboratories of Wundt, Ebbinghaus,
and Fechner in Germany; the study of intelligence in France by Binet and Simon; the
work of English biologists Galton and Pearson; and the American experimental psy-
chologist Cattell all contributed in tangential or direct ways to the testing movement.

A seminal event in testing occurred when Alfred Binet, a French psychologist,
and Theodore Simon were commissioned by the Parisian minister of public educa-
tion in 1904 to develop a process to identify schoolchildren who would not benefit
from instruction in the regular school system. Their work on the first formal intel-
ligence test resulted in the assessment of children aged 3 to 13.

Work on other tests of intelligence, achievement, personality, and interests took
place in the early 20th century. The advent of the First World War, and the need to
test intelligence for large numbers of people in group settings, rendered the indi-
vidually administered tests that had been developed to date too resource intensive.
The result was the development by Otis in 1917 of the Army Alpha (for literate
respondents) and Army Beta (for illiterate respondents) group-administered intel-
ligence tests. The current Armed Services Vocational Aptitude Battery is based on
Otis’s early work.

The need for matching the vocational skills and interests of the many new immi-
grants to North America was answered by the development of interest inventories.
As the standard of living for many living in North America climbed, more young
adults wanted to enter colleges, universities, and graduate schools. The need for
tests of achievement that assessed students and allowed for comparison with others
across the continent (i.e., standardized testing) influenced the creation and use of
the Scholastic Aptitude Test, the Graduate Record Examination, and many others.

It was during World War II that, for the first time, the capabilities of machines
outpaced the capabilities of humans. The need to develop careful tests of psy-
chomotor skills was answered. In the 1930s and 1940s, the interest in personality
as a construct was widely discussed, with Freud’s and Jung’s writings capturing the
imaginations of laypeople and professionals alike. Today, measures of various
aspects of personality are commonplace.
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Testing has become normative in schools and workplaces. However, some
identifiable demographic groups have been disadvantaged by traditional paper-
and-pencil tests. With the civil rights movement and the passage of Title VII in the
United States, the testing enterprise went on the defensive. Specifically, the onus of
the “validity of a test” was on the test administrator. Litigation abounded and many
organizations became wary of using test scores for making personnel decisions.

The 1980s saw an exponential rise in the use of computers. Computer-based
testing and computer-adaptive testing have become more regular features of the
testing terrain. New tests are coming on the scene every day, revisions to older tests
recur on a regular basis, and the public is increasingly knowledgeable about tests
and their rights with regard to the use of test scores. All of these advances testify
to the need for social scientists to be skilled in test development and evaluation
methods.

Statistics Background

Before continuing, it will be useful to freshen up on some statistics basics. As this
book proceeds, some fairly advanced statistical information will be introduced.
This book assumes that the reader has taken (and passed) a basic statistics course
in college or university. Topics that will be reviewed here are scales of measurement,
characteristics of the normal distribution, p values, and statistical significance. In
addition, a quick refresher on sampling distributions, correlation, and regression is
in order. Finally, linear conversion of raw scores is presented, as this is used exten-
sively in the measurement literature.

Scales of Measurement. In the measurement process, data are collected and
numbers assigned to them. Depending on the type of data collected, those num-
bers carry different meanings. These meanings are based on the scale of mea-
surement used.

The most rudimentary scale of measurement is the nominal scale. Here, the
numbers are simply ways to code categorical information. For example, data may
be collected on men and women and, for sake of expediency, all cases that are
men are coded with a 1 and all cases that are women are coded with a 2. If data
are collected on a college campus, college major may be coded numerically (e.g.,
science = 1, social science = 2, humanities = 3, etc.). In all instances, these nominal
numbers reflect nothing other than a category. The numerical values in nominal
scores do not represent an assessment of more or less of any particular value.

The next, more complex, level of measurement is ordinal. In ordinal measure-
ment, the numbers assigned have meaning in that they demonstrate a rank order
of the cases. For example, if members of a class are rank ordered from highest to
lowest based on their test scores, the rank ordering indicates who did better than
whom. However, ordinal measures do not indicate an absolute level of perfor-
mance. For example, if the finishers of a race are rank ordered from first to last,
this indicates who ran faster than whom but does not indicate anything about the
runners’ absolute speed in completing the race.
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Interval is the next most sophisticated level of measurement. Here, the numbers
are rank ordered, but now more information is contained in the numbers. Specifi-
cally, the differences between the numbers are equivalent. That is, the difference
between 2 and 3 can be assumed to be the same as the difference between 3 and 4.
For example, temperature is measured at the interval level. If it is 20 degrees on
Day 1, 25 degrees on Day 2, and 30 degrees on Day 3, the temperature change from
Day 1 to Day 2 is exactly the same as that from Day 2 to Day 3.

For interval-level data, each case has an absolute value associated with it.
However, there is no fixed zero point with these types of scales. The result of no
fixed zero is best demonstrated through an example. Let’s say we want to measure
individuals’ “need for achievement” with a particular scale. With an interval level
of measurement, the scores can be interpreted to mean that someone with a score
of 15 is as different from someone with a score of 20 as is someone with a score of
20 compared to someone with a score of 25. The scale provides us with interval-
level information. However, there is no universally accepted level of “zero need for
achievement.” Therefore, we cannot conclude that someone with a score of 20 has
half the need for achievement as does a person with a score of 40. In order to make
that claim, we would need to have an absolute zero point on the scale.

Ratio level of measurement provides the most information about the numbers
because it has all the characteristics of interval-level measurement, plus there is
an absolute zero point. Scales measured at the ratio level would include height,
weight, speed, time, and distance. If person A is six feet tall and person B is three
feet tall, it is true to say that person A is twice as tall as person B. If person A runs
10 kilometers in 40 minutes and person B runs 5 kilometers in 40 minutes, it is true
to say that person B ran half as fast as person A.

The reason for the review of this topic is that the appropriate statistical
procedure to use in any data set depends on the level of measurement used. Most
data that social scientists collect are at the nominal, ordinal, or interval level. In
scale development and use, we often aspire to measure at the interval level, but we
can often only achieve the ordinal level.

The Normal Distribution. A common assumption about any measured individual
difference, whether it is a personality characteristic, cognitive skill, motor skill,
social skill, or other attribute, is that this difference is normally distributed in
the population. The normal distribution is a symmetrical, bell-shaped curve (see
Figure 1.1). The shape shows that more of the area under the curve is in the center
of the distribution, and, as one moves toward the “tails” of the distribution, the area
under the curve becomes less and less.

Using height as an example of a normally distributed characteristic, everyone’s
height in a country could be measured. It would be the case that there are a few short
people and a few tall people, but most people’s heights would fall somewhere in the
midrange. The more extreme the height (shorter or taller), the fewer the number of
people who would have that height. The normal distribution serves to determine if
a particular value is extreme or not when conducting statistical analyses. Values at
the extreme ends of the distribution are unusual and the exact “extremeness” of any
value can be quantified based on probability, which we turn to next.

o
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Figure 1.1 Normal Distribution

Probability and Statistical Significance. Prior to beginning this section, recall that
when probability is mentioned, science is a conservative endeavor. This means that
when scientists ask a question such as, Are girls more likely than boys to sign up for
a high school auto mechanics class? they are likely to say that the question is empir-
ical and that data should be collected to answer the question.

So a sample of high schools in the city is selected, and the percentages of girls
and boys enrolled in auto mechanics classes are compared. Suppose it is found that,
out of the 1,000 enrollments in the high school auto mechanics classes for the fall
term, 55% were boys and 45% were girls. Would it be justifiable to claim that more
boys than girls signed up for auto mechanics? What if the percentages were 60%
to 40%? What if the percentages were 75% to 25%? What if the percentages were
90% to 10%? At what point would the scientists be willing to say that there is a
“statistically significant difference in the proportion of boys versus girls taking
auto mechanics™?

The answer is known as the adopted alpha level (o). It reports that the difference
found in the sample of boys versus girls would happen by chance alone X number
of times out of 100. So what does X equal? Usually it equals 1 or 5. This means that
the difference in percentages found in the sample would have to be large enough to
only occur by chance 1 out of 100 times (0. = 0.01); or, less conservatively, 5 out of
100 times (o = 0.05); or, even less conservatively, 10 out of 100 times (o= 0.10).

These o levels correspond to p values, or sometimes p levels, on statistical
printouts. The p value stands for the probability level. If the p value for a particular
statistical test (whether it is a correlation, f test, chi-square, etc.) is equal to 0.03,
then this is interpreted to mean that the finding from the particular sample would
occur by chance alone 3 times out of 100. If the p value was equal to 0.30, then this
is interpreted to mean that the finding from the particular sample would occur
by chance alone 30 times out of 100. If the p value was equal to 0.006, then this is
interpreted to mean that the finding from the particular sample would occur by
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chance alone 6 times out of 1,000. In the social sciences, the usual o level adopted
for making decisions about statistical significance is 0.05 or 0.01.

Sampling Distributions. There is a difference between sample distributions and
sampling distributions. An example of a sample distribution would be a distribu-
tion of a set of scores on a history test by a class of 6th-grade students. This distri-
bution would show the mean score of the class, variance of the class scores, lowest
and highest scores, and so forth. Sampling distributions, however, are theoretical
distributions and are used in making statistical decisions. Like sample distributions,
sampling distributions have means and variances. Multiple sampling distributions
are associated with inferential statistics, such as ¢ tests, F tests, chi-square tests,
correlation tests, and so forth. The shape of each sampling distribution is based on
different sample sizes and the number of variables in the analysis. Sampling distri-
butions are used to set the o level for a particular statistical test and used to decide
whether or not to reject the null hypothesis.

For example, if we were interested in the difference between need for achieve-
ment scores for men and women and we had a sample of 10 men and 10 women,
we would test for the differences between the means of the sample scores and have
a t statistic generated. We would then use a 7 table that reports the critical value the
calculated t value needs to exceed in order for it be considered statistically signifi-
cant. That is, the t value calculated has to be extreme enough to be considered
highly unusual and not likely to occur by chance alone.

Sample sizes are important because they tell which sampling distribution to use
to test whether or not the calculated statistic is significant or not. What is common
about all sampling distributions is that as the sample size on which the statistic is
calculated increases, the critical value the statistic needs to exceed to be considered
significant (i.e., extreme) decreases. Take, for example, our 10 men and 10 women
and their hypothesized difference in need for achievement scores. If we had used a
two-tailed test and adopted an o level of 0.05, then the critical # value the calculated
t value needs to exceed is 2.101. All else remaining constant, if we had 15 men and
15 women in our sample, the # value to exceed is 2.048. Thus, it is easier to find a
significant difference using the larger sample than with the smaller sample.

Correlation. Correlation describes the strength and direction of the linear relationship
between two variables. Data for a correlational analysis are put into two columns
(vectors) of numbers, where X represents values on one variable and Y represents
values on the other variable. These columns would be set up like the following:
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If the X variable was the number of hours studied, the Y variable might represent
grades on an exam on that material as follows:

X Y
5 80
6 87
7 89
9 95

A general pattern in the four pairs of scores emerges: as the number of hours
of study goes up, the grade on the exam goes up. That is, the pairs vary together in
a linear, positive manner. Let’s take another example. What if the X variable was a
measure of job satisfaction (where higher scores mean higher levels of satisfaction)
and Y was a measure of intentions to quit? Then the pairs of numbers might look
like the following:

X Y
10 3
8 5
7 7
2 10

In this example, a general pattern in the four pairs of scores also emerges.
However, this time, as the job satisfaction values go down, intentions to quit values
go up. So in this example, the pairs vary together in a linear, negative manner.

The statistic that summarizes the strength and direction of the relationship
between two vectors of variables is called the Pearson product-moment correlation
coefficient, or correlation coefficient for short. Values of the correlation coefficient
vary from —1.00 to +1.00. The more the pairs of values vary together, the stronger
the relationship and the farther from 0.00 (whether a positive or negative value) the
correlation coefficient will be. That is, a correlation coefficient of —0.80 indicates
that there is a strong negative relationship between the pairs of values. A correlation
coefficient of 0.40 indicates that there is a moderate positive relationship between
the pairs of values.

Table 1.1 shows a set of four scores: A, B, X, and Y. In Box 1.1, the correlation
between A and Bis calculated to review the procedure. However, given the common
availability of many of these calculations in computer programs, this book takes
the approach that interpreting the information on the outputs provided by such
programs is worthy of discussion. Therefore, the correlation program in SPSS will
be used to first assess the correlation between A and B, and then again between X
and Y. The relevant sections of the printout are shown in Box 1.2.
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Table 1.1 Data for Two Examples of Pearson Correlations

Case A B X Y
1 6 45 10 1
2 7 120 9 3
3 8 100 8 2
4 9 101 7 4
5 2 76 6 3
6 3 55 5 5
7 4 80 4 3
8 5 76 3 4
9 6 90 2 5
10 7 110 1 5
11 8 115 10 6
12 9 120 9 3
13 1 52 8 2
14 2 40 7 4
15 3 43 6 1
16 4 20 5 6
17 5 86 4 5
18 5 80 3 4
19 6 15 2 1
20 7 87 1 2

Box 1.1 Computation of the Pearson Correlation of Columns A and B in
Table 1.1

The Pearson Correlation for two variables (bivariate) computational formula is as
follows:

(1-1) r=[NZAB - (ZA) (EB)]A [N (ZA%) - (RA)T [N (2B?) - (2B)’]

This formula is used to calculate the correlation of the data in columns A and B
in Table 1.1. First, the values in columns A and B are squared and then A and B
are cross-multiplied. The results are shown in Table 1.2.

(Continued)
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Box 1.1 (Continued)

Table 1.2 Bivariate Pearson Correlation Computation Example Data Set
Case A B A? B? AB
1 6 45 36 2025 270
2 7 120 49 14400 840
3 8 100 64 10000 800
4 9 101 81 10201 909
5 2 76 4 5776 152
6 3 55 9 3025 165
7 4 80 16 6400 320
8 5 76 25 5776 380
9 6 90 36 8100 540
10 7 110 49 12100 770
11 8 115 64 13225 920
12 9 120 81 14400 1080
13 1 52 1 2704 52
14 2 40 4 1600 80
15 3 43 9 1849 129
16 4 20 16 400 80
17 5 86 25 7396 430
18 5 80 25 6400 400
19 6 15 36 225 90
20 7 87 49 7569 609
SUM (%) 107 1511 679 133571 9016
r=1[(20 x 9016) — (107) (151 1)]/\/[20(679) —(107)?] [20(133571) — (1511)?]
= (180320 — 161677)A/[(13580) — (11449)] [(2671420) — (2283121)]
= (18643)4/(2131) (383299)
= 18643/28766
=0.684

The results from the printout show that the correlation coefficient calculated
between A and B is equal to 0.648. The significance level (or p value) of 0.002 indi-
cates that the chance of us finding the magnitude of relationship between these
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Box 1.2 Output from the SPSS Pearson Bivariate Correlational Analyses of
Columns A and B and Columns X and Y in Table 1.1

Pearson Correlation between A and B: 0.648?
Sig. (two-tailed): 0.002; N = 20
a. Correlation is significant (p < 0.01; two-tailed)

Pearson Correlation between X and Y: —0.150°
Sig. (two-tailed): 0.527; N =20
a. Correlation is not significant (p > 0.05; two-tailed)

20 pairs of numbers by chance alone is 2 in 1000 times. This is even less common
(i.e., the finding of 0.648 is a value that would be found at the very extreme upper
end of the sampling distribution) than the usual threshold of 0.01 or 0.05, and so
it can be concluded that there is a significant positive relationship between A and B.
The two-tailed test is the default for SPSS for testing correlation coefficients. This
means that the direction of the relationship between A and B was not specified in
advance. If the direction was specified to be either positive or negative, the option
“one-tailed” in the SPSS program could be selected.

The correlation coefficient calculated for X and Y'is equal to —0.150. It is nega-
tive in value and has a significance level of 0.527. This indicates that the chances
of finding the calculated magnitude of relationship between these 20 pairs of
numbers by chance is 527 in 1000 times. This is much higher than the usual
threshold of 0.01 or 0.05 (i.e., the finding of —0.150 is a value that would be found
in the middle of the sampling distribution), and so it must be concluded that there
is no relationship between X and Y. That is, unless the significance level is smaller
than 0.05 or 0.01 (whichever is adopted), it is assumed that the calculated value is
not significantly different from 0.00 (the value at the exact middle of the sampling
distribution).

Sometimes the question is raised as to how many cases one needs to calculate
a correlation coefficient. The answer is, at a bare minimum, three. This is because
there need to be at least three cases for the correlation significance level to be
calculated. However, three cases are hardly enough to be confident about the calcu-
lated value of the correlation coefficient. Exactly how many cases are needed can be
directly assessed, depending on the strength of the expected relationship, through
something called a power analysis (e.g., Cohen, 1988). However, a good rough rule
of thumb is to have 10 cases per variable. Because correlation uses two variables,
20 cases are usually sufficient to be able to draw some conclusions about the
sample data if a moderate relationship between them is expected.

Linear Regression. Regression, as in correlation, is an analysis of linear relationships
between variables. However, a major difference is that regression requires the
researcher to indicate that one variable is dependent (criterion) on the other(s) (pre-
dictor[s]). In the linear regression examples in this book, there will always be only
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one criterion variable. In some cases there will be one predictor (simple or bivariate
regression) and in other cases more than one predictor (multiple regression).

A regression analysis produces a series of results that will take a bit of time to
review. As in correlation, assume that there are vectors (or columns) of numbers: each
column represents a variable and each row represents a case, or a subject’s scores on
each of the variables. First, a case of simple regression will be reviewed, where there is
only one predictor, followed by an example of multiple regression, with two predictors.

Assume the criterion is “starting salary” in $1000 dollars and the predictor is
“university GPA.” Another predictor, “cognitive ability,” will be added in the second
analysis. The data are set up as in Table 1.3 and the computational calculations of
the bivariate regression are presented in Box 1.3. The SPSS output for the bivariate
analysis is shown in Box 1.4.

Text continues on page 17

Table 1.3 Data for Bivariate (Simple) and Multiple Linear Regression Analyses
Starting Salary
($1,000) University GPA Cognitive Ability
Case 1 20 2.0 100
Case 2 21 2.1 120
Case 3 22 2.0 110
Case 4 23 2.3 104
Case 5 24 2.1 90
Case 6 25 35 95
Case 7 26 3.0 115
Case 8 27 2.9 112
Case 9 28 3.4 115
Case 10 29 2.8 98
Case 11 30 3.0 120
Case 12 31 33 100
Case 13 32 3.4 110
Case 14 33 2.9 115
Case 15 34 2.8 100
Case 16 35 3.5 102
Case 17 36 34 108
Case 18 37 33 110
Case 19 38 3.2 116
Case 20 39 3.0 118
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Model Summary

R R-Square Adjusted R-Square Std. Error of Estimate
0.70 0.49 0.46 4.3378
ANOVA
Sums of Squares df Mean Square F Sig.
Regression 326.23 1 326.30 17.34 | 0.001
Residual 338.70 18 18.82
Total 665.00 19
Coefficients
Standard | Standardized
Model Unstandardized b Error (Beta) t Sig.
Constant 6.54 5.60 1.17 0.258
GPA 7.93 1.90 0.70 4.16 0.001
Multiple Regression Output:
Model Summary
R R-Square Adjusted R-Square Std. Error of Estimate
0.72 0.52 0.46 4.3559
ANOVA
Sums of Squares df Mean Square F Sig.
Regression 342.44 2 171.30 9.02 | 0.002
Residual 322.56 17 18.97
Total 665.00 19
Coefficients
Standard Standardized
Model Unstandardized b Error (Beta) t Sig.
Constant -4.25 12.99 -0.33 | 0.747
GPA 7.72 1.93 0.68 4.01 | 0.001
Cognitive 0.11 0.12 0.16 0.92 | 0.369

o
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Box 1.3 Computational Calculations of a Bivariate Regression Analysis

Using the data in Table 1.3, computational formulae are used to generate the regression line and
other statistics for the bivariate regression of salary on GPA (see Table 1.4).

The predicted salary scores (using the regression line formula calculated), and squared deviation scores
can then be calculated. These are needed for the calculation of the R? and standard error of estimate.

Presented next are the predictor scores, the predictor scores less the mean of the predictor scores,
and the squares of the difference of those terms. These are needed for the calculation of the stan-
dard error of the regression coefficient (b).

Table 1.4 Data for Use in Calculating the Bivariate Regression Line
Case Salary GPA GPA? GPA x Salary
1 20 2 4 40
2 21 2.1 4.41 441
3 22 2 4 44
4 23 2.3 5.29 52.9
5 24 2.1 4.41 50.4
6 25 3.5 12.25 87.5
7 26 3 9 78
8 27 2.9 8.41 78.3
9 28 3.4 11.56 95.2
10 29 2.8 7.84 81.2
11 30 3 9 90
12 31 3.3 10.89 102.3
13 32 3.4 11.56 108.8
14 33 2.9 8.41 95.7
15 34 2.8 7.84 95.2
16 35 3.5 12.25 122.5
17 36 34 11.56 122.4
18 37 3.3 10.89 1221
19 38 3.2 10.24 121.6
20 39 3 9 117
Sum (2) 590 57.9 172.81 1749.2
Mean 29.5 2.895
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Predicted Salary (Actual — Predicted)? (Actual — Y)? (Predicted — Y)?
22.4 5.76 90.25 50.41
23.193 4.809249 72.25 39.778249
22.4 0.16 56.25 50.41
24779 3.164841 42.25 22.287841
23.193 0.651249 30.25 39.778249
34.295 86.397025 20.25 22.992025
30.33 18.7489 12.25 0.6889
29.537 6.436369 6.25 0.001369
33.502 30.272004 2.25 16.016004
28.744 0.065536 0.25 0.571536
30.33 0.1089 0.25 0.6889
32.709 2.920681 2.25 10.297681
33.502 2.256004 6.25 16.016004
29.537 11.992369 12.25 0.001369
28.744 27.625536 20.25 0.571536
34.295 0.497025 30.25 22.992025
33.502 6.240004 42.25 16.016004
32.709 18.412681 56.25 10.297681
31.916 37.015056 72.25 5.837056
30.33 75.1689 90.25 0.6889

¥338.70° 2665 $326.34°

a. This is also known as the residual sums of squares.

b. This is also known as the regression sums of squares. Note there is a slight discrepancy from the printout
version due to rounding error in generating the predicted scores.

(Continued)
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Box 1.3 (Continued)

GPA GPA — Mean GPA (GPA — Mean GPA)?
2 -0.895 0.801025
2.1 -0.795 0.632025
2 —-0.895 0.801025
2.3 -0.595 0.354025
2.1 -0.795 0.632025
3.5 0.605 0.366025
3 0.105 0.011025
29 0.005 2.5E-05
3.4 0.505 0.255025
2.8 -0.095 0.009025
3 0.105 0.011025
3.3 0.405 0.164025
3.4 0.505 0.255025
29 0.005 2.5E-05
2.8 —-0.095 0.009025
35 0.605 0.366025
34 0.505 0.255025
3.3 0.405 0.164025
3.2 0.305 0.093025
3 0.105 0.011025
X =2.895
Bivariate regression coefficient computational formula:
(1-2) b =[NXZIXY - EX)ZY)VINZX? — (EX)2].
Bivariate regression constant computational formula:
(1-3) a=Y-bX.
To solve for b,
b =[(20)(1749.2) — (57.9)(590)]/[20(172.81) — (57.9)3],
=(34984 - 34161)/(3456.2 — 3352.41),
=823/103.79,
=7.93.
To solve for a, then,
a=Y-bX,
=29.5-(7.93) (2.895),
=29.5-22.96,
=6.54.
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Regression line: predicted salary = 6.54 + 7.93(GPA)

Calculating the R? value:

(1-4) R* =S XY -Y)/x(Y -Y),
= 326.34/665,
= 0.49.

Calculating the adjusted R? value:

(1-5) Adjusted R =1 — (1 = ROIIN — AN — k — 1)],
=1-(1-0.49) [(20 - )20 -1 -1)],
=1-(0.51)(19/18),
=1-(0.51)(1.06),
=1-0.54,
=0.46.

Calculating the standard error of estimate:

(1-6) SE=A~Z(Y-Y)Y/N-k-1),

where Y = actual scores, Y = predicted scores, N = sample size, and k = number of predictors,

SE=+/338.70/20 - 1 - 1),
SE = 4.34.

Calculating the F:

(1-7)  F = (Regression Sums of Squares/df)/(Residual Sums of Squares/df),
=(326.34/1)/(338.70/18),
=326.34/18.82,
=17.34 (1,18 degrees of freedom).

Calculating the standard error of b:
(1-8)  Sb =~/(SE)*/(Sum of Squared Deviations of X),
=+/(4.34)/5.19,

=+/18.84/5.19,
=1.90.

Calculating the t:
(1-9) t =b/Sh,
=7.93/1.90,
=4.17. (This value is the same as that found in the computer printout within rounding
error.)

Referring to the information in Box 1.4, there are three tables in the output of an
SPSS regression analysis: the model summary, the ANOVA table, and the coefficient
table. The model summary and ANOVA tables indicate whether or not all of predic-
tors, as a unit, account for a significant amount of variance in the criterion. In the case
of simple regression, there is only one predictor, so “all of them as a unit” means only
GPA. In the model summary, the R value is the multiple correlation between the

predictor and criterion. For this example, the value is 0.70 and it is actually calculated

o
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18 PSYCHOLOGICAL TESTING
Box 1.4 Bivariate (Simple) Regression Output From SPSS
Model Summary
R R-Square Adjusted R-Square | Std. Error of Estimate
0.70 0.49 0.46 4.3378
ANOVA
Sums of Squares df Mean Square F Sig.
Regression 326.23 1 326.30 17.34 0.001
Residual 338.70 18 18.82
Total 665.00 19
Coefficients
Model Unstandardized b | Standard Error | Standardized (Beta) t Sig.

Constant 6.54 5.60 1.17 0.258
GPA 7.93 1.90 0.70 4.16 0.001

based on the R-square value that indicates how much variance in the criterion
(salary) can be predicted with the predictor (GPA). In this example, it is 0.49, or 49%.

The adjusted R-square value provides an estimate of what to expect the R-square
value to be if the study was conducted again with a new sample of 20 cases. In this
case, the value is 0.46, indicating that some shrinkage in the R-square value is
expected (i.e., reduced from 0.49 to 0.46). Although the adjusted R-square value
is always smaller than the R-square value, the less shrinkage between the calculated
R-square and adjusted R-square the better. When the difference between them
is small, one can be more confident about the robustness of the R-square value. Next,
the standard error is reported. This is the error associated with predicting scores on
the criterion. Larger values indicate more error in prediction than do smaller values.

Whether or not the R-square value is significant is determined in the ANOVA
table, using an F test. It can be seen that the F associated with the amount of vari-
ance accounted for in starting salary by GPA is 17.34 (with 1 and 18 degrees of free-
dom), which is significant at 0.001 (i.e., this extreme a value would occur by chance
alone only 1 time out of 1,000). Therefore, concluding that university GPA accounts
for a significant amount of variance in starting salary is justified.

One of the more important calculations from the analysis is the regression line.
The summary of those calculations is in the coefficients table. The regression line
is a mathematical function that relates the predictor to the criterion variable. It is

o
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calculated so that the line minimizes the squared distances of each point from the
line. In simple regression, the regression line is written with the following formula:

(1-10) Y =a+bX,

where Y’ = the predicted Y score for a given value of X, b= the regression coeffi-
cient (also called the slope), a = the intercept (or constant), where the regression
line crosses the y-axis, and X = the obtained values on X.

To interpret the information in the coefficients table, use the unstandardized
constant and GPA coefficients (6.54 and 7.93, respectively). The regression line then
can be written as follows:

Y’ =6.55+7.93(GPA).
For someone with a GPA of 4.0, the predicted starting salary would be

Y’ =6.55 + 7.93(4.0),

or 36.11 ($36,110, as salary level was coded in $1,000 units).

A scatterplot of the two variables is shown in Figure 1.2 as well as the regres-

sion line.
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Figure 1.2 Regression Line of Starting Salary on GPA
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In addition to obtaining the information for the regression line, the coefficients
table reports the “unique” contributions of each predictor and whether the unique
contribution is significantly different from zero. If the unstandardized coefficient
value is divided by its respective standard error, a t value for the predictor is
obtained. In this example, there is one predictor (i.e., GPA) and it has a t value of
4.16 (7.93/1.90), which is significant at 0.001. When there is only one predictor,
the Fvalue in the ANOVA table is equal to the square of the ¢ value (4.16* = 17.34).
The beta value, or standardized coefficient, is simply the standardized value of the
unstandardized coefficient. That is, if standard scores rather than raw scores had
been used in this analysis, the beta value would be 0.70. Beta values are like corre-
lations insofar as they range in value from —1.00 to 0.00 to a high of 1.00. A score
of 0.00 shows no relationship between the predictor and criterion. Its use will
become more apparent in multiple regression, which we will turn to next.

As an example of a multiple regression analysis, cognitive ability scores will be
added as a predictor (see Box 1.5). Because cognitive ability is added after GPA,
a hierarchical approach is used in entering the variables into the equation. If both
GPA and cognitive ability were entered into the equation at the same time, this
would have been a simultaneous, or direct, entry of the predictors. If the computer
selected which variable to enter first into the regression analysis based on a statisti-
cal criterion, it would be called a statistically driven entry, the most common of
which is stepwise. In a stepwise regression analysis, the predictor with the highest
zero-order correlation with the criterion is entered into the equation first. Then the
predictor with the highest correlation with the criterion, after the effects of the first
predictor are taken into account, is entered on the next step. Subsequent steps con-
tinue until there are no more variables left that account for a significant amount of
the variance in the criterion.

Notice that the R-square value in this analysis is 0.52. By adding cognitive
ability into the mix, an additional 3% of the variance in starting salary can be
accounted for. The overall value of 52% is significant (F=9.02, significant at
0.002), indicating that together GPA and cognitive ability account for a significant
amount of variance in starting salary. The adjusted R-square is 0.46, indicating that
the shrinkage estimate is calculated to be 6% (0.52 — 0.46). This shrinkage is larger
than in the previous example with one predictor (recall that it was 3%). This is in
part due to the increase in the number of predictors with no commensurate
increase in the number of cases.

The regression line is Y'=-4.25+7.72(GPA) + 0.11(cognitive ability). The
printout shows that the t value for GPA is significant (f=4.01, significance of
0.001), but for cognitive ability is not (= 0.92, significance of 0.369). This means
that GPA predicts starting salary above and beyond what cognitive ability does, but
cognitive ability does not predict starting salary above and beyond GPA.

In addition, the beta values confirm that the predictive value of cognitive ability
is questionable. That is, the relative strength of GPA (0.68) is quite high compared
to that of cognitive ability (0.16). Thus, with this data set it would be concluded that
the measure of cognitive ability does not enhance the prediction of starting salary,
whereas GPA does.

o
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Box 1.5 Multiple Regression Output from SPSS
Model Summary
R R-Square Adjusted R-Square | Std. Error of Estimate
0.72 0.52 0.46 4.3559
ANOVA
Sums of Squares df Mean Square F Sig.
Regression 342.44 2 171.30 9.02 0.002
Residual 322.56 17 18.97
Total 665.00 19
Coefficients

Model Unstandardized b | Standard Error | Standardized (Beta) t Sig.
Constant -4.25 12.99 -0.33 0.747
GPA 7.72 1.93 0.68 4.01 0.001
Cognitive 0.11 0.12 0.16 0.92 0.369

There is a sample size problem here. Recall that there should be about 10 cases
per variable in the equation. Because there are three variables, there should be
about 30 cases but there are only 20 in this analysis. It is not that the regression
program won’t run—it will. It is up to the researchers to indicate that a lower than
desirable sample size was used in the analysis and that, therefore, caution needs
to be exercised so that the results are not overinterpreted. As scientists, it is
convention to err on the side of being conservative in knowledge claims.

Correlation and regression will be used frequently in the coming chapters and
thus a cursory review was deemed warranted at this point. If this brief overview was
not sufficient, please see any number of introductory statistics textbooks to refresh
more fully these topics.

Score Meaning. Raw scores on tests need to be interpreted. The numbers attached
to raw scores are only meaningful in the context of a referent group of scores.
For example, if I say, “I got a 15 on my history exam!” you don’t know what that
means—did I do well or poorly? This comparative information is called normative
information. It is determined by knowledge about the referent group; in this case,
you need to know how well the rest of the history class did on the exam to make my
15 meaningful.
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Normative information is important for making sure that correct interpreta-
tions of scores are made. The larger and more representative the reference group to
which a single score is compared, the more confidence can be placed in the inter-
pretation of that score’s meaning. For example, it would be better to compare my
history exam mark of 15 with 1,000 students’ marks over the last 10 years than to
compare it with the marks of three classmates sitting around me.

This is why, for the more popular published tests, norm tables are provided.
These tables have been created over many years by collecting large samples of
data from many different test takers. These tables are sometimes broken down by
demographic variables such as gender or age. This is so the test score interpreter
can make a comparison of a score with the most appropriate demographic group.
These normative samples are both very large and representative of the demographic
characteristics of the group. An assumption in using norm tables is that the same
test was used and administered under the same conditions as in the normative
sample. Thus, it is up to test administrators to familiarize themselves with the
administration protocol.

To make any raw score meaningful, it can be transformed into a distribution
of meaningful, familiar values. The distribution most commonly known to social
scientists is the standard normal distribution discussed earlier. It has a mean of 0.0
and a standard deviation of 1.0. This distribution is used because most individual
differences are assumed to be normally distributed in the population. However, it is
important to examine the degree to which this assumption is met in any sample
data set. Luckily, most of the statistical procedures used in this text are robust (yield
similar results to those found in normal distributions) to deviations of normality.

Converting a raw score (X) to a standard score (z score) based on the normal
distribution is done via a simple transformation:

(1-11) zscore = (X=X )/SD (standard deviation),

where the X and standard deviations are based on the sample.
Let’s reconsider my history exam score of 15. If the mean of the class was 13 and
the standard deviation was 2, then my raw score converts to a standard score of

zscore = (15-13)/2,

z score = 1.0.

This means that if I look up my score of 1.0 in a distribution of normal scores,
I see that I did better than about 84% of the class. Once I determine my z score,
I can convert it to any other distribution where the mean and standard deviations
are known. Some well-known distributions are the T score distribution with a
mean of 50 and standard deviation of 10, or the Graduate Record Exam (GRE)
distribution with a mean of 500 and standard deviation of 100. To make the
conversions, simply use the following equation:

(1-12) New distribution score = (z score X SD new) + Mean new.
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Assume someone has a z score of 0.43 on the GRE. The new GRE distribution
score would be

GRE = (0.43 x 100) + 500,
= (43) + 500,
=543.

Assume someone has a z score of —1.5 on a test that will be converted to a T score.
The new T distribution score would be

T score = (—1.5 x 10) + 50,
= (=15) + 50,
= 35.

Figure 1.3 shows the normal distribution and the T score equivalents of some of
the major values on the distributions. Thus, it can be seen that transforming scores
simply means taking the values on one distribution and changing the values to
reflect another distribution.

Another common conversion of raw scores is to percentile ranks. This is the
percentage of individuals in the reference group earning a lower score than the score
obtained. So, for example, if a score of 153 on a test is obtained and this is superior to
67% of the reference group, then the percentile rank is 67%. To calculate the percentile
rank, the raw scores of the sample must be known as well as the number of individu-
als in the sample. Percentiles are not as commonly used as are standardized scores.

0.45 ~
0.4 -
0.35 1
0.3
0.25 A

0.2 1

Ordinate

0.1

0.05

0 T T T T T T T
z=-3 z=-2 z=-1 z=0 z=1 z=2 z=3
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z-scores and T-Scores

Figure 1.3 Normal Distribution Showing Selected z and T Scores
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Quite a bit of time has been taken to review some of the information needed
before embarking on the actual construction of a test. It is now time to make
the transition to beginning the test development process. The first of these steps
is to be clear on the construct to be measured. The rest of this chapter is devoted
to that issue.

The First Step: Identifying the Construct

The first step in building any type of tool to assess individual differences is to iden-
tify the construct. The Webster’s dictionary (Guralnik, 1976) defines a construct as
“An idea or perception resulting from a synthesis of sense impressions.” This is a
useful definition, because it intimates that constructs are amorphous things; they
are “ideas” and these ideas are a synthesis about a series of impressions. In other
words, constructs are self-defined. The onus is on the test developer to convince the
test user that the construct that is being measured is a reasonable assimilation and
synthesis of ideas. Arguments are commonplace in the social sciences about “what
we mean by construct X.” One person’s definition may not be the same as another’s.
If I ask an entire class to write down a definition of success, I will get as many dif-
ferent responses as there are students in the class. This means that it is unlikely that
I will be able to create a test to assess success that will meet the expectations of all
the students.

What is expected with a scale that is developed or used is that the individuals
who respond to the items will provide information that will allow inferences to be
made about the construct. Let’s assume, for example, that we want to define the
construct of being a team player in an organizational setting. Eventually, we will
create a set of items that will, it’s hoped, operationalize the construct of being a
team player. For the moment, however, we’ll concern ourselves with the issues of
defining the construct itself.

It is helpful to have a list of what should be included and excluded from the
construct. For example, in our assessment of being a team player, we’ll restrict the
construct to work settings; being a team player in sports, personal relationships,
and so forth are not to be included in the domain of interest. Other aspects of what
we want to include and what we want to exclude are also noted (see Table 1.5). This
process makes explicit, for both the test developer and others as test consumers,
what the measure will try to encompass and what it will not.

Links Between Constructs. For many tests, the goal is not just to test for the sake of
testing. Instead, making inferences about the scores obtained on those tests is of
interest. For example, the GRE is often used to make inferences about how well a
test taker will do in graduate school. An assumption here is that the GRE assesses
some cognitive skills that are needed to be successful in graduate school. The valid-
ity of this inference about GRE scores, then, is dependent on two things: the actual
link between cognitive skills in graduate school and how well the GRE measures
cognitive skills. In order to test this inference, actual numbers (data) must be
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Table 1.5 Included and Excluded Aspects of Being a Team Player
Included Excluded

Workplace examples Sports examples
School projects Personal relationships
Past experiences Present circumstances
Outcomes Personality conflicts
Progress to ends Non-Western cultures
Effort expended
Evaluation of results

collected and will include GRE scores and some measure of success in graduate
school. The strength of this link will be calculated using the actual data collected.
Keep in mind, however, that the real purpose of the testing enterprise is to make
inferences about the “true” link of cognitive skill and success in graduate school.

Figure 1.4 shows an example of what we may be likely to try to do with our scale
of team performance. That is, we may want to predict an outcome, such as team
effectiveness, and we want to use the amount of “team playerness” in teams as a pre-
dictor of that outcome. Recognize at the outset that a direct assessment of the true
relationship between the amount of team playerness and team effectiveness is not
possible (noted as the hypothesis question relationship in Figure 1.4). Instead, a cal-
culated value between two measures of the constructs will be obtained. The mea-
sures of the constructs are ideally going to be accurate assessments of being a team
player and team effectiveness. While the desired relationship is aimed for, calculated
relationships inevitably fall quite short of that mark. An example will assist in
making this clear.

Let’s say we are in an organization that creates computer software. We want
to know if being a good team player is related to team performance. There are an
infinite number of ways to assess how much being a team player is part of the work
group. One of the measures of the effectiveness of the team’s work could be the
number of errors that have to be debugged in the computer program. This is obvi-
ously only one of many potential ways to assess team effectiveness, but it will be
helpful to keep things simple for the time being.

Now, information is collected about being a team player using a team player
measure and about team effectiveness using a measure of the number of errors. We
now have numbers to calculate the relationship between the two measured vari-
ables. It is apparent that the tighter the measurement linkages between the ideal
constructs (shown in circles in Figure 1.4) and the measured variables (shown as
squares in Figure 1.4), the better. Better in this context means more confidence in
the inferences and knowledge claims about the link between being a team player
and team effectiveness based on a calculated relationship between two measures.
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Hypothesis
Team Player F------ Q— u_e S—h?r—] —————— Team
Y Effectiveness
Measured Measured
Variable Variable
Calculated Number of
Value

Errors in
a Computer
Program

Team Player
Inventory

Figure 1.4 Linkages Between Hypothesized and Measured Relationships

Construct Cleanliness. Constructs are “clean” when they evaluate what they are
supposed to; that is, the measurement links shown in Figure 1.4 are perfect insofar
as the measured variables correspond 100% to the idea constructs. If a variable
perfectly represents the construct, then measurement issues are not a concern.
The trouble is that measured variables inevitably represent the idea construct
imperfectly.

These imperfections come in two types: deficiency and contamination. A vari-
able is deficient to the extent that the domain of interest is not covered. If I want to
assess the extent that someone is likely to be a team player and I do not ask about
that person’s past experiences working on teams, my variable is likely to be defi-
cient. If a group of 4th-graders is told that they will have a test on basic math skills
but they are only given subtraction problems, the test is deficient in that addition,
multiplication, and division problems have not been included.

Contamination of a construct by a measured variable is when the measure
contains information that should not be part of the construct. If the team player
assessment tool is administered to a team and they all fill it out together so that they
all see each other’s responses, “socially desirable” responses are more likely to occur
rather than true responses. If a 4th-grade class is told that that they will be having
a test on division but addition items are included, then the test is contaminated.

Contamination is easier to detect than is deficiency in any variable using various
statistical procedures. Deficiency, however, has to be demonstrated rationally. If a
construct seems to be missing something, finding that missing something usually
comes from reviewing the existing theories and research or from practical knowledge
about the construct.
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Single Versus Multiple Constructs. An extremely important consideration in scale
development and assessment is the extent to which the scale measures single or
multiple constructs. This is not a simple matter. For example, volumes of writing
and much work have gone into taking sides in the debate about whether or not
intelligence is a multifaceted construct or a single construct. The evidence that both
sides produce is logical and statistically sophisticated. The question, though, remains
unanswered.

Some who have created scales to measure certain constructs have called a truce on
this issue. For example, there are scales that measure facets of job satisfaction (e.g.,
satisfaction with pay, promotion, supervisor, etc.) and others that measure overall job
satisfaction. Both are useful in different contexts. If an organization wants to assess if
a new promotion system has had an effect on job satisfaction, then assessing “satis-
faction with promotional opportunities” is more relevant than measuring other facets
of job satisfaction (such as satisfaction with coworkers) or overall job satisfaction. On
the other hand, if a new leadership team makes large structural changes in the orga-
nization, the members may be interested in the effects this might have on overall job
satisfaction and therefore the overall measure would be more appropriate.

There is no right answer in the development of constructs as to whether the
construct is unitary or multiple. It is better that a scale is developed with a clear
idea first about whether one or multiple constructs are to be measured. Multiple
constructs are more difficult to measure because, in addition to measuring them
individually, how the constructs work together and relate to one another must
be understood. This layer of complexity is best handled methodologically and
statistically if it is posited to exist in advance of collecting any data.

27

Summary and Next Step

In this introductory chapter we have

a. reviewed why measurement is critical for science and why the problems asso-
ciated with measurement in the social sciences pose unique problems,

ISH

provided a brief summary of some of the historical highlights of measurement,

reviewed the nomenclature around scales of measurement,

/oo

reviewed some of the basic premises of statistical analyses,

o

presented some of the common statistical procedures we’ll be using in this text,

=,

showed how scores are made meaningful by transforming them, and

g. presented the first step in developing any scale—defining the construct of
interest.

The next step in the process of developing an instrument is to convert a
construct into a series of stimuli (items) on which numerical information can be
collected. This is the operationalization phase. It is time-consuming but, if done
correctly, will save hours and days of time later on in the process.
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Problems and Exercises

. Recall a time when a test score had an impact on your life or on the life of

someone you know. Describe what was measured, how it was measured, and
how the score was used. Indicate the degree to which you felt that the test
score was used appropriately and why.

. An o level of 0.05 means what? What about an o level of 0.01, 0.001, 0.10, or

0.20?

. Calculate the correlation coefficient by hand for the X and Y variables in

Table 1.1.

. Calculate the bivariate regression line of salary regressed on cognitive ability

(data in Table 1.3). If you had a cognitive skill of 110, what would be your
predicted starting salary level? Calculate the R-squared, adjusted R-squared,
E Sb, and t when regressing starting salary on cognitive ability. Interpret your
findings.

. At what level would the following variables be measured?

a. Distances between towns

b. Intelligence measured by an IQ test

¢. The rank ordering of members of a class based on height

d. The numbering of those with blue eyes 1, brown eyes 2, green eyes 3, and
other colors 4

. If T obtain a score of 100 on a test that has a mean of 120 and a standard

deviation of 10, what is my standard score? What would be my T score (mean
of 50 and standard deviation of 10)?

. Choose a construct that you are interested in finding more about. Here are a

few examples to get you started thinking: civic-minded, athletic, studious,
and humorous. Once you have selected your topic, create a chart like the one
in Table 1.5. Share your ideas with your classmates.



