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C H A P T E R  3

Evaluating the  
Characteristics of Data

Chapter 2 focused on the process of statistical hypothesis testing. Part of this process 
(Step 6) involves evaluating the extent to which the data being analyzed meet the 
assumptions of the tests being considered. Chapter 3 will outline available methods for 
evaluating the characteristics of data. First, the level of measurement of a variable needs 
to be identified to determine the most appropriate parametric or nonparametric statistical 
test. Next, it is important to evaluate the normality of the variable’s distribution, the 
impact of outliers, the homogeneity of variance, and sample size adequacy.

CHARACTERISTICS OF LEVELS OF MEASUREMENT

Measurement is the process of assigning numbers or codes to observations according to 
certain prescribed rules. The way in which these values are assigned to the observations 
determines a variable’s level of measurement. The most widely accepted set of rules for 
determining a variable’s level of measurement is that developed by S. Stevens (1946). This 
typology consists of four levels of measurement whose order is based on how much 
information they carry. These levels are nominal, ordinal, interval, and ratio. Table 3.1 
summarizes the characteristics of these four levels of measurement.

Nominal
The first level of measurement is nominal. A variable that is measured on a nominal 

scale is one that has distinct nonoverlapping categories. The numbers that are assigned to 
these categories have no intrinsic meaning, but all persons who share the same category 
are assigned a similar value.

There are three basic requirements for a “good” nominal-level variable: (1) all 
members of one level of the variable must be assigned the same number, (2) no two 
levels are assigned the same number, and (3) each observation can be assigned to one 
and only one of the available levels. Given that these three conditions have been 
fulfilled, the levels of the nominal-level variable are mutually exclusive and exhaustive.
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Nonparametric Statistics for Health Care Research18

The variable gender is a nominal-level measurement because it is composed of two 
independent, mutually exclusive (nonoverlapping), and exhaustive levels: male and 
female. In our hypothetical intervention study, each of the 20 participating children 
could be assigned a “0” or a “1” depending on whether the child is a male (0) or a female 
(1). The numbers 0 and 1 that have been assigned to these levels have no inherent order 
to them; these numbers could have been reversed. They merely indicate the gender 
group to which the child belongs. Additional variables in our hypothetical study that 
have a nominal level of measurement are the group to which the child was assigned 
(intervention = 0, usual care = 1), diagnosis (1 = solid tumor, 2 = acute myeloid leukemia, 
3 = lymphoma, 4 = sarcoma), and race/ethnicity (1 = Caucasian, 2 = African American, 
3 = Hispanic or Latino, and 4 = other).

Parametric statistics assume ordering and meaningful numerical distances between 
values; therefore, these statistics do not provide very useful information if the dependent 
or outcome variable has a nominal level of measurement. It does not make sense, for 
example, to report an average marital status. For nominal data, researchers rely instead 
on frequencies, percentages, and modes to describe their results. Nonparametric 
inferential statistics (e.g., the chi-square goodness-of-fit test or Fisher’s exact test) may 
also be applied to these data.

Ordinal
The next level of measurement is ordinal. A variable that has an ordinal level of 

measurement is characterized by having mutually exclusive categories that are sorted 
and rank ordered on the basis of their standing relative to one another on a specific 
attribute according to some preset criteria. Although it may be possible to ascertain that 
one person has a higher rank relative to another person, it is not possible to determine 
exactly how much higher that person is than another.

Suppose the nurses in our hypothetical intervention study were asked to assess on 
a 7-point scale (1 = not at all distressed to 7 = very distressed) the extent to which a 
particular child appears to be distressed prior to our planned intervention. This 

Level of 
Measurement

Mutually 
Exclusive 
Groups

Rank 
Ordering

Equidistant 
Values

Meaningful 
Zero Point Example

Nominal • Marital status
Ordinal • • Stress level (1−7)
Interval • • • Depression scale (1−100)
Ratio • • • • Weight (pounds)

Table 3.1 Overview of the Characteristics of the Levels of Measurement
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Evaluating the Characteristics of Data    19

variable, preintervention distress, is an ordinal-level variable. We know, for example, 
that Child A, who received a “6” on preintervention distress, was more distressed prior 
to the intervention than Child B, who received a “3” on this scale. Because there are 
not equidistant intervals on this 7-point scale, however, it is not possible to conclude 
that Child A is twice as distressed as Child B or that the difference between a “6” and 
a “7” is the same as the difference between a “3” and a “4.” Moreover, not all values 
necessarily share the same intensity. For example, Nurse C’s assignment of a “7” to a 
child may not have the same intensity level as Nurse D’s “7.” We only know that, for 
both nurses, a particular child was “very distressed” according to their criteria.

Because there is order to the values of an ordinal scale, descriptive statistics that 
rely on rank ordering (e.g., the median) can be used in addition to percentages, 
frequencies, and modes. Numerous nonparametric inferential statistics are available 
to test hypotheses about similarities of medians between groups and relationships 
among variables.

There has been much heated discussion in the research literature about the 
appropriateness of using parametric tests with ordinal-level data (Armstrong, 1981; Carifio 
& Perla, 2008; Jamieson, 2004; Knapp, 1990; Norman, 2010; Pell, 2005). Pedhazur and 
Schmelkin (1991) suggest that this controversy was sparked by early writings of S. Stevens 
(1951), who argued that means and standard deviations, the backbones of parametric 
statistics, were not appropriate measures of central tendency for ordinal data. Others have 
effectively argued (Knapp, 1990) that the critical issue is not so much that the data are 
ordinal but rather that the data have a sufficient sample size (e.g., N > 30) and a relatively 
normal distribution of the dependent variable to merit the use of parametric statistics. 
Norman (2010) presents a convincing argument that parametric statistics can be used with 
Likert data even with small sample sizes, unequal variances, and nonnormal distributions.

Interval
Interval-level scales are more refined than either nominal or ordinal scales. Like the 

ordinal scale, the interval-level scale has mutually exclusive groups and rank ordering. 
Unlike the ordinal scale, the interval-level scale has equidistant intervals. This means 
that we obtain information not only about the rank order of a particular score but also 
about how much greater or less a particular score is than another. That is, on an inter-
val scale whose range is 1 to 100, the difference between 100 and 75 is, in some sense, 
the same as the difference between 75 and 50.

A classic example of an interval-level scale is temperature measured in degrees 
Fahrenheit. We know, for example, that a child whose body temperature is 102° has a 
temperature that is 2° higher than a child whose body temperature is 100°. Because an 
interval-level scale does not have an absolute zero point, however, the distances between 
values, although theoretically equidistant, do not carry exactly the same meaning. That 
is, the change in body temperature from 98° to 101° is not meaningfully the same as a 
change in body temperature from 102° to 105°. However, 100° is not twice as hot as 
50° because 0° Fahrenheit is a numerical convenience, not an absolute.
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Nonparametric Statistics for Health Care Research20

A common practice among researchers is to use a multi-item scale to measure single 
or multiple constructs. The individual items tend to be either nominal (e.g., 0 = agree 
vs. 1 = disagree) or ordinal (e.g., 1 = strongly agree to 5 = strongly disagree) in nature, 
and the item responses are summed to produce a scale with interval-level properties 
and with a larger range of possible scores (e.g., 0–100). From these data, we can use 
all the measures of central tendency and variance. Parametric statistics such as the t 
test, analysis of variance (ANOVA), and Pearson product-moment correlation coefficient 
are all possible considerations.

In our intervention example, we might decide to use a 14-item self-reported fatigue 
assessment scale for children ages 7 to 12 years (Hinds et al., 2007; Hockenberry et al., 
2003). This Childhood Fatigue Scale (CFS) is a 14-item instrument that first asks the 
child for a “yes” or “no” response regarding their experiences of 14 fatigue-related 
symptoms (e.g., I have been tired). If the child answers yes to the symptom, he or she 
is then asked to describe the intensity of the fatigue symptom on a scale of 1 (not at 
all) to 5 (a lot). From these 14 items, a total fatigue score can be generated with a range 
of scores from 0 (no fatigue) to 70 (high fatigue) along with three subscales: lack of 
energy, inability to function, and altered mood. (Hinds & Hockenberry-Eaton, 2001; 
Hockenberry et al., 2003).

Again, controversy exists as to the true nature of the level of measurement of such 
a multi-item scale (Knapp, 1990; Nunnally & Bernstein, 1994; Pedhazur & Schmelkin, 
1991). That is, is an “interval” scale that has been generated from ordinal data truly 
interval? Should we even care? For statistical analysis, the concern is not so much the 
variable’s “true” level of measurement as much as whether the information generated 
from the use of a particular statistic best represents the data. This conclusion can be 
reached only by examining the data thoroughly to determine the extent to which a 
particular test’s assumptions have been violated. Pedhazur and Schmelkin (1991) 
indicate that, even in his later writings, S. Stevens (1968) argued, “The question is 
thereby made to turn, not on whether the measurement scale determines the choice of 
a statistical procedure, but on how and to what degree an inappropriate statistic may 
lead to a deviant conclusion” (p. 852).

Ratio
The highest level of measurement is ratio. In addition to maintaining the character-

istics of the previous three levels of measurement (mutually exclusive and exhaustive 
categories, rank ordering, and equidistant intervals), a ratio-level variable also has a 
meaningful and absolute zero point that represents the complete absence of a given 
attribute. Because of its invariant zero point, the ratio of any two scores from a ratio 
scale is unchanged by transformations through multiplication and division.

Examples of ratio-level variables include weight, blood pressure, and temperature 
Kelvin. In our hypothetical study, a child’s body weight and time to first voiding could 
be considered ratio-level variables. The age of the child might be more controversial. 
Our society has yet to agree on when an individual becomes a human being. At 
conception? At birth? Or at some other place along the way?

                                                                      Copyright ©2016 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Evaluating the Characteristics of Data    21

It does not matter much in statistics whether a variable is at the interval or ratio level 
of measurement. Both of these levels of measurement are appropriate for use with 
parametric statistics. To reiterate, equally important determinations regarding the use 
of parametric statistics are sample size and the shape of the distribution of the dependent 
variable.

Which Level of Measurement Is “Best”?
There is no clear answer as to which level of measurement is best for a particular 

research question. Clearly, the researcher wants to attain the very highest level of 
measurement possible given the time, financial, and design constraints of the research. 
The higher levels of measurement, interval and ratio, provide the researcher with the 
opportunity to use potentially more powerful statistical tests. Moreover, it is always 
possible to collapse data into lower levels of measurement. It is not possible, however, 
to resurrect interval-level data from precollapsed nominal data. The best approach is 
not to collapse data while entering them into the computer. Data can be collapsed, if 
necessary, later on during the statistical analyses.

ASSESSING THE NORMALITY OF A DISTRIBUTION

Returning to our hypothetical intervention study, suppose that we were interested in 
assessing the normality of the distribution of scores for children’s self-reported fatigue 
during the 24 hours prior to the implementation of our intervention. As indicated above, 
this is a variable whose scores can range from 0 to 70, with higher scores suggesting 
greater intensity of fatigue. There are several ways that we could assess the normality of 
this variable. First, we could examine the distribution’s skewness and kurtosis. Next, we 
could visually examine the distribution of the data to obtain a sense of its shape. Finally, 
we could statistically test the extent to which the data fit a theoretically normal 
distribution.

All three of these approaches are available in SPSS for Windows by choosing the  
following commands from the dropdown menu: (a) Analyze . . . Descriptive Statistics . . . 
Frequencies . . . (Figure 3.1) and (b) Analyze . . . Descriptive Statistics . . . Explore . . . 
(Figure 3.2). The Frequencies and Explore dialog boxes allow the researcher a number 
of options for evaluating data.

As indicated in Figure 3.1, by opening the Frequencies . . . Charts dialogue box and 
selecting Histograms . . . with normal curve, a normal distribution can be superimposed 
over the histogram of the variable of interest 1 . This allows the researcher to visually 
inspect the data for violations of normality. The Analyze . . . Descriptive 
Statistics . . . Explore  command may also be used to statistically test for normality 
(Figure 3.2, 1 ). This procedure also produces information regarding descriptive 
statistics, stem-and-leaf plots, boxplots, outliers, normal probability plots, and statistical 
tests of normality. Separate analyses can be obtained for subgroups of data as well.
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Nonparametric Statistics for Health Care Research22

Figure 3.1 SPSS for Windows Analyze . . . Descriptive Statistics . . . Frequencies . . .  
commands for assessing normality of a distribution.

Skewness
Before we interpret the results of our SPSS output, let’s review the meaning of 

skewness and kurtosis. You will recall that a normal distribution takes the form of a 
bell-shaped curve that is centered on the mean (Figure 3.3A). The normal distribution 
is symmetric, and all three measures of central tendency—the mean, median, and 
mode—share the same value. One simple way of assessing normality of a distribution, 
therefore, is to examine the measures of central tendency. If the mean, median, and 
mode are nearly equal in value, then there is evidence to suggest that the distribution 
is symmetric. If these three values are not at all similar, then the distribution is char-
acterized as being asymmetric or skewed; that is, the distribution has one tail that is 
longer than the other.

There are two types of skewness: positive and negative skew. A distribution is positively 
skewed if the distribution’s longer tail extends toward the right or toward the higher set 

1

Reprints Courtesy of International Business Machines Corporation,  International Business Machines Corporation 
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Evaluating the Characteristics of Data    23

of values (Figure 3.3B). This results in the value of the mean being pulled to the right and 
being larger in value than the median or mode. A distribution that is negatively skewed 
has a longer tail that extends toward the left or toward the lower set of values (Figure 
3.3C). This results in the mean being smaller in value than the median or mode.

The measure of skewness is referred to as the third moment about the mean,  
Σ(X − X )3/(n − 1) (Neter, Wasserman, & Whitmore, 1993; Park, 2008). Because this 
third moment is measured in cubed units (e.g., weight cubed), a standardized measure 
of skewness is considered more useful because its size does not depend on the units 
of measurement. This standardized measure is obtained by dividing the third moment 
by the cube of the standard deviation (s3) of the variable being examined (Neter et al., 
1993). This is the skewness value that is presented in the computer printout.

When a distribution is a symmetric bell-shaped curve, the value of this measure of 
skewness is 0. The measure has a negative value when the distribution is negatively 

Figure 3.2 SPSS for Windows Analyze . . . Descriptive Statistics . . . Explore . . .  
commands for assessing normality of a distribution.

1

Reprints Courtesy of International Business Machines Corporation,  International Business Machines Corporation 
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Figure 3.3 Comparison of the most common forms of distributions and suggested 
transformations.

A.	 Normal (mesokurtic)
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B.	 Positively skewed
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C.	 Negatively skewed
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SOURCE: Transformation suggestions come from Hair, Anderson, Tatham, and Black (1995) and Tabachnick and Fidell (2013). 
In Panels C and F, k represents a constant, usually the largest score +1.
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skewed and a positive value when the distribution is positively skewed. To determine 
the seriousness of the skewness of a distribution, one of two measures of skewness, 
Fisher’s or Pearson’s, can be used (Kellar & Kelvin, 2012; Lehman, 1991; Salkind, 2010). 
The Fisher’s coefficient is as follows:

Fisher skewness coefficient skewness / standard error skew= nness.

To calculate the Fisher skewness coefficient, the SPSS computer-generated value for 
skewness (Skewness) is divided by the standard error for skewness (SE Skew). If the 
resulting z statistic lies beyond the range of ±1.96 (the critical value for a two-tailed z 
statistic at α = .05), the distribution is asymmetric and significantly skewed. Calculated 
values of this coefficient that fall between −1.96 and +1.96 suggest that the distribution 
is not significantly different from a normal distribution.

A second commonly used index for skewness is the Pearson skewness coefficient (Skp):

Pearson skewness coefficient Sk 3 X Mdp= = [( ) / ].− s

This statistic uses the difference between the mean ( X ) and median (Md) of a distribution 
divided by the variable’s standard deviation (s) to determine the level of skewness. If  
Skp = 0, the mean and median are equal and therefore the distribution is symmetric. A 
negative coefficient indicates a negative skew (i.e., the mean is smaller than the median), 
and a positive value represents positive skewness (i.e., the mean is larger than the 
median). Lehman (1991) suggests that values of Skp between −0.5 and +0.5 indicate 
generally acceptable levels of skewness.

Kurtosis
A second characteristic of a distribution is its kurtosis, or the fourth moment about the 
mean (Balanda & MacGillivray, 1988; DeCarlo, 1997; Neter et al., 1993; Park, 2008), 
calculated as Σ(X − X )4 /(n − 1). Because this fourth moment is measured in (units)4, a 
standardized measurement of kurtosis is available in statistical packages that divides the 
fourth movement by s4. Evaluation of a distribution’s kurtosis is especially useful after it 
has been determined that the distribution is not unduly skewed. It is not very useful for 
asymmetric or skewed distributions.

Three terms are used to denote different levels of kurtosis: mesokurtic, leptokurtic, 
and platykurtic. A normal distribution has a standardized kurtosis value that is equal to 
zero and is referred to as being mesokurtic (Figure 3.3A). A positive value for the 
standardized kurtosis coefficient implies that the distribution is leptokurtic, or more 
peaked than a normal distribution (Figure 3.3D). (To remember what leptokurtic means, 
it might be helpful to recall Superman, leaping tall buildings in a single bound.) A 
negative value for the standardized kurtosis coefficient implies that the distribution is 
platykurtic, or flatter than a normal distribution (Figure 3.3E). (Remember that, like the 
platykurtic distribution, a platypus is an animal that stands low and close to the ground.) 
Kellar and Kelvin (2012) suggest using a Fisher coefficient to evaluate kurtosis:

Fisher coefficient of kurtosis kurtosis standard error of = / kkurtosis.
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That is, the standardized kurtosis value is divided by its standard error to determine the 
extent to which a bell-shaped symmetric curve deviates from a normal distribution. If 
this z statistic falls outside the range of ±1.96, then the bell-shaped distribution is 
significantly different from a standard normal distribution.

Computer Analysis of Skewness and Kurtosis
Assuming that the data for the 20 subjects in our hypothetical study have been entered 

into the computer data file (we are using “hospitalized children with cancer-20 cases.sav” 
located on the SAGE website, study.sagepub.com/pett2e), the syntax commands and 
computer-generated frequency output for the child’s self-reported fatigue preintervention 
are presented in Figure 3.4. This output was obtained by running the commands pre-
sented in Figure 3.1 and selecting the preintervention fatigue variable for analysis.

We are first presented with the frequency distribution of the child’s preintervention 
fatigue variable (Figure 3.4, 1 ). Recall that the scores could range from 0 to 70, with 
higher scores indicating greater fatigue. Given that no child indicated that he or she was 
“very fatigued” during the preintervention phase, there are no values higher than 35. 
Notice that the mean (29.25), median (30.0), and mode (35.0) 2 , although close, are 
not equal to one another, suggesting that the data may be skewed. Because the mean is 
smaller than either the median or the mode, the data are negatively skewed, with the 
longer tail in the direction of the smaller values, a condition that is verified by the 
skewness value of −1.103 3 . Dividing the measure of skewness by the standard error 
for skewness (−1.103/.512) results in a Fisher skewness coefficient of −2.15, which falls 
outside the acceptable limits of ±1.96, suggesting that the data may be seriously skewed. 
It is interesting that a different result is obtained for the Pearson Skp:

Sk 3 X Md 3 29 25 3 6 54 34p = = ( ) = −( ) / . . / ( . ) . .− −s 0 0

The resulting value of −.34 is within the acceptable range of this coefficient (−.5 to + .5). 
This discrepancy may be explained by the extreme sensitivity of the Fisher measure of 
skewness to outliers (Kellar & Kelvin, 2012). Because the statistic is based on deviations 
from the mean raised to the third power, outliers have a very strong effect on this measure.

Ordinarily, when a distribution has serious skewness problems, indicating that it is not 
bell-shaped, it would not be necessary to examine its kurtosis. Given that we have 
conflicting information regarding this distribution’s skewness, however, it would be useful 
to examine the distribution’s kurtosis as well. The positive value (.380) for kurtosis 4  
indicates that the distribution is leptokurtic, or more peaked than a normal distribution. 
Dividing the value for kurtosis by its standard error (.992), however, yields a Fisher 
coefficient of kurtosis of .383, which is well within the ±1.96 range for a normal distribution.

Visually Examining the Shape of the Distribution
Given these somewhat conflicting results, it is important that we examine the data 

visually to determine for ourselves the seriousness of the skewness. In fact, the 
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Figure 3.4 Computer-generated output obtained in SPSS for Windows (v. 22–23) for the 
frequencies and histogram of preintervention fatigue.

necessity of visually examining data for departures from normality cannot be over-
stressed. No statistical test of normality is superior to what my biostatistician friend, 
Dr. James Reading, refers to as the eyeball test.

The eyeball test consists of visually examining the data’s distribution to determine 
if the distribution looks sufficiently comparable to a normal distribution for  
the researcher to feel comfortable using parametric tests. Is the mean an adequate 

Statistics

Child’s self-reported fatigue-preintervention  

N
Valid 20

Missing 0

Mean 29.2500

Median 30.0000

Mode 35.00

Std. Deviation 6.54438

Variance 42.829

Skewness -1.103

Std. Error of Skewness .512

Kurtosis .380

Std. Error of Kurtosis .992

Child’s self-reported fatigue-preintervention

Frequency Percent Valid Percent Cumulative Percent

Valid

15.00 2 10.0 10.0 10.0

20.00 1 5.0 5.0 15.0

25.00 3 15.0 15.0 30.0

30.00 6 30.0 30.0 60.0

35.00 8 40.0 40.0 100.0

Total 20 100.0 100.0

0
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Reprints Courtesy of International Business Machines Corporation,  International Business Machines Corporation 
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representation of these data? Are there unusual “kinks” in the distribution? Is the 
distribution unimodal, or are there multiple modes? Are there outliers about which 
to be concerned? What effect does the sample size have on the potential shape of 
the distribution? Although the mean, median, and mode may be similar, a limited 
sample size may restrict one’s ability to adequately distinguish the shape of  
the distribution. If the data do not have a normal distribution, is there a possible 
transformation that could be performed (e.g., log or square root) that would make 
sense logically and that would transform the nonnormal distribution into a more nearly 
normal distribution?

Figure 3.4 also presents a graph of the normal curve superimposed on the distribu-
tion for the preintervention fatigue variable for the 20 subjects in our hypothetical 
study 5 . This figure indicates that the data are negatively skewed and somewhat 
leptokurtic in shape. The distribution also appears to have serious deviations from 
normality. With so few data points (N = 20), the shape of the distribution may also not 
be definitively determined. This information suggests that the use of nonparametric 
tests with these data may be in order. A second alternative would be to consider the 
possibility of transforming the preintervention fatigue variable to obtain a more nearly 
normal distribution.

Additional plots of normality may be generated in SPSS for Windows (v. 22–23) 
through the Analyze . . . Descriptive Statistics . . . Explore . . . Plots . . . Normality plots 
with tests . . . commands. These plots can be of help in visually examining data. They 
include normal probability plots and detrended normal plots. Figure 3.5 presents 
examples of normal and detrended normal probability plots for selected distributions.

Normal and Detrended Normal Probability Plots.
In the normal probability plot, each data point is paired with its expected value given 

a nearly normal distribution of similar range and sample size. If the sample is from a 
nearly normal distribution (Figure 3.5A), a normal probability plot of the observed and 
expected values would indicate that nearly all values lie along a 45° straight line running 
from the lower left corner to the upper right corner of the plot 6 . Note that, except 
for a few minor deviations, the values fall along the 45° line.

A detrended normal probability plot is one in which the deviations from normal for 
each value in the sample are plotted against the observed values. If the sample is from 
a nearly normal distribution, these deviations will cluster evenly around zero along a 
horizontal band. This indicates that there is little difference between the observed 
values and expected values. The detrended normal probability plot for the nearly 
normal distribution in Figure 3.5A, third panel 7 , illustrates this pattern. Note that 
the data do not need to fall exactly along a straight line but rather that the band of 
values is similar in width across all values of the data.

Distributions that are skewed or bimodal (e.g., Figures 3.5B–D) show markedly 
different patterns of deviations from normality. Curvilinear patterns often emerge, 
suggesting that the data are badly skewed (Figures 3.5B–C) 8  9  or bimodal 
(Figure 3.5D) 10 . Outliers can be identified on these plots because they occupy 
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positions away from the other values and do not appear to be connected to them 
(Tabachnick & Fidell, 2013). For example, in Figure 3.5C 9 , the values in the lower 
left-hand corner of the normal and detrended normal probability plots represent the 
outliers for this negatively skewed distribution.

Computer Examples of the Plots.
Figure 3.6 presents normal probability and detrended normal probability plots for 

the self-reported preintervention fatigue variable. The plots were generated from the 
SPSS for Windows (v. 22–23) commands Analyze . . . Descriptive Statistics . . . Explore . . .  
Normality plots with tests . . . illustrated in Figure 3.2. The data file that we are using is 
hospitalized children with cancer-20 cases.sav found on the SAGE website, study.sage 
pub.com/pett2e.

The two plots in Figure 3.6 confirm what we saw in Figure 3.4, that the preintervention 
fatigue data are not normally distributed. The values for this fatigue variable are not 
similar to the expected values and, therefore, are not situated on the 45° straight line 
of the normal probability plot (Figure 3.6A) 11 . The detrended plot (Figure 3.6B) 12  
indicates that the largest deviation from normality appears to be with the smaller 
values; they are farthest from the horizontal line that goes through 0.

Statistical Tests of Normality
The statistical tests for normality that are provided in SPSS for Windows (v. 22–23) 

are the Shapiro-Wilks and Kolmogorov-Smirnov (K-S) Lilliefors statistics. These can be 
obtained by selecting the Analyze . . . Descriptive Statistics . . . Explore commands 
from the menu, clicking on Plots and selecting Normality plots with tests. The objectives 
of these nonparametric goodness-of-fit tests are to compare the obtained distribution 
with a theoretically normal distribution of the same mean and standard deviation and 
to determine whether the deviations from normality are sufficiently large to conclude 
that the distribution under investigation is not normal. The null hypothesis is that the 
data are normally distributed; the alternative hypothesis is that the data are not nor-
mally distributed. The null hypothesis will be rejected if the obtained significance level 
is less than our stated level of alpha (e.g., α = .05).

Both the Shapiro-Wilks and K-S Lilliefors statistics are extremely sensitive to 
departures from normality. It is strongly recommended, therefore, that the researcher 
supplement these statistical tests with the previously discussed methods for examining 
data for departures from normality (e.g., visually examining the data and assessing 
skewness and kurtosis).

The computer printout generated from SPSS for Windows for the Shapiro-Wilks and K-S 
Lilliefors statistics is presented in Table 3.2. For the preintervention fatigue variable, we 
have obtained similar results. Both tests indicate that the distribution is not normal 
(significance < .001 is less than α = .05) (Table 3.2) 13 . This is not always the case, 
however. Sometimes you will find that the two statistics disagree. Conover (1999) suggests 
that the Shapiro-Wilks test for normality may be more powerful than the K-S Lilliefors 
statistic in that it may be more likely to correctly reject the null hypothesis of normality.
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Figure 3.6 Normal probability plots of preintervention fatigue scores (n = 20).

A. Normal Probability Plot

B. Detrended Normal Probability Plot
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Our determination of whether to accept or reject the preintervention fatigue distribution 
as normal should be based on all contributing factors: the level of measurement of the 
data, its visual representation, the similarity of the measures of central tendency, skewness 
and kurtosis, the statistics, and the sample size. Based on this evidence, we would most 
likely conclude that the data for preintervention fatigue are not normally distributed. This 
conclusion is based on the observation that although the data might be considered 
interval level of measurement, the visual representations suggest nonnormality; the mean, 
median, and mode are not similar; there is some skewness; the Shapiro-Wilks and K-S 
Lilliefors statistics support rejection of the null hypothesis of normality; and we had a 
sample size of only 20. This determination would suggest that we would seriously need 
to consider using nonparametric statistics when analyzing this variable.

Examining Distributions of the Dependent Variable by Subgroups
For many parametric tests, it is expected that the distribution of the dependent vari-

able be normally distributed not only as a whole but also when broken down into sub-
groups of a particular independent variable of interest. Table 3.3 presents the syntax 
commands and a breakdown of the preintervention fatigue scores of the children by 
staff-initiated intervention and usual-care groups using the hospitalized children with 
cancer-20 cases.sav. These printouts were generated in SPSS for Windows by highlighting 
the Analyze . . . Descriptive Statistics . . . Explore commands (see Figure 3.2) and placing 
the dependent variable, Intensity_Fatigue_preintervention, in the Dependent List and the 
independent variable, Group, in the Factor List.

The resulting descriptive statistics (Table 3.3) and histograms (Figure 3.7) indicate 
that the staff-initiated intervention and usual-care groups have similar means and 
distributions. This suggests that we may have been successful in creating similar groups 
through random assignment—at least with regard to preintervention fatigue. The 
skewness statistics for the intervention group (skewness/standard error for skewness 
= −1.085/.687 = −1.579) and the usual-care group (−1.338/.687 = −1.95) also indicate 
that the variable’s skewness for both groups is within an acceptable range (±1.96) 

Table 3.2 Statistical Tests for Normality of the Preintervention Fatigue Variable

Reprints Courtesy of International Business Machines Corporation,  International Business Machines Corporation 
aLilliefors significance correction.

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Child’s self-reported fatigue-
preintervention

.2.46 20  .003 .812 20  .001
13 13
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Table 3.3 Computer-Generated Printout of Pretreatment Fatigue by Group (Usual Care,  
Staff-Initiated Intervention) (SPSS for Windows, v.22–23)

Descriptives

staff-initiated intervention vs. usual care Statistic Std. Error

Child’s self-reported
fatigue-preinteivention

usual care group Mean 29.5000 2.03443

95% Confidence Interval 
for Mean

Lower Bound  
Upper Bound

24.8978
34.1022

5% Trimmed Mean 30.0000

Median 30.0000

Variance 41.389

Std. Deviation 6.43342

Minimum 15.00

Maximum 35.00

Range 20.00

Interquartile Range 10.00

Skewness -1.338 .687

Kurtosis 1.864 1.334

staff-initiated intervention Mean 29.0000 2.21108

95% Confidence Interval 
for Mean

Lower Bound 
Upper Bound

23.9982
34.0018

5% Trimmed Mean 29.4444

Median 30.0000

Variance 48.889

Std. Deviation 6.99206

Minimum 15.00

Maximum 35.00

Range 20.00

Interquartile Range 11.25

Skewness -1.085 .687

Kurtosis .265 1.334

–1.338/0.687 = –1.95
–1.085/0.687 = –1.579

Tests Df Normality

staff-initiated inteivention  
vs. usual care

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Child’s self-reported usual care group .231 10 .139 .824 10 .028

fatigue-preintervention staff.initiated intervention .257 10 .060 .835 10 .038

a. Lilliefors Significance Correction

14

16 15

Reprints Courtesy of International Business Machines Corporation,  International Business Machines Corporation 
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Evaluating the Characteristics of Data    35

Figure 3.7 Boxplots of preintervention fatigue for the staff-initiated and usual-care 
group generated in SPSS for Windows (v. 22–23).
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(Table 3.3, 14 ). Given the small sample size for both groups (n = 10), however, as well 
as the shape of the histograms for both groups, nonparametric tests most likely would 
be used with these data. This conclusion is further supported by the significant 
Shapiro-Wilks tests for both groups, .028 and .038, which are less than α = .05 15 .

Notice, however that the Kolmogorov-Smirnov p values for the two groups are .139 
and .06 16 , both of which are >.05. This test suggests that we should retain the null 
hypothesis, which states that the data are normally distributed. What should we do with 
this conflicting advice? Again, we need to return to the plots of the data (Figure 3.7) to 
determine for ourselves which of these two statistics we should believe. The results 
presented in Figure 3.7 suggest that both of the distributions for the usual-care and 
intervention groups appear to be negatively skewed. The conclusion, therefore, would 
be that, indeed, we do have skewed distributions for both groups. 

DEALING WITH OUTLIERS

One of the disadvantages of the mean as a measure of central tendency is its sensitivity 
to outliers. Because outliers are extreme data points that are very much different from 
the rest of the data, they tend to pull the value of the mean in their direction. This can 

17

18

Reprints Courtesy of International Business Machines Corporation,  International Business Machines Corporation 
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result in serious distortion of results. The median, on the other hand, is not at all 
influenced by atypical data points because the median assesses ranks, not actual values. 
The presence of outliers, therefore, requires a careful assessment of their influences both 
on the mean and on the variable’s distribution. Outliers also provide information about 
the types of cases that may not fit a particular hypothesized model.

There are two types of outliers: univariate and multivariate. Univariate outliers are 
those cases that possess extreme values on a single variable (e.g., a child who has an 
extreme fatigue score). Multivariate outliers are cases with unusual combinations of scores 
on two or more variables. For example, a person may be of an acceptable age (e.g., 16 
years old) and another person could have a reasonable number of children (e.g., four), 
but a 16-year-old who has four children would most likely appear as a multivariate outlier.

Assessing Univariate Outliers Using the Boxplot
Boxplots (Figure 3.7) are very useful for identifying cases that are univariate outliers. 

They also provide a snapshot summary of the descriptive statistics for the distribution. 
On request, SPSS for Windows plots the smallest and largest values of the data set, the 
median (the horizontal bar inside the box), the 25th percentile (the lower boundary of 
the box), and the 75th percentile (the upper boundary), and it presents values that lie 
far outside this range. The interquartile range makes up the box presented in this plot. 
This is where 50% of the cases are located. The boxplot for the normal distribution in 
Figure 3.5 A illustrates a distribution that is symmetrical, with equal tails, and a median 
that lies halfway between the upper and lower boundaries of the box.

Two types of univariate outliers are presented in the boxplots for SPSS for Windows. 
Any value that is more than three box-lengths (i.e., 3[P75 − P25]) from the upper or lower 
boundary of the box is designated on the plot with a “*” and is referred to as an extreme 
value. Each value that is between 1.5 (i.e., 1.5[P75 − P25]) and 3 box-lengths from the 
upper or lower boundary of the box is identified with an “O” and is called an outlier. 
The outliers and extreme values are also identified either by their case number (the 
default option) or by specifying a case label (e.g., the variable id). This information is 
useful for tracking down and correcting possible errors in data entry. The largest and 
smallest observed values that are not outliers are presented by lines drawn from the 
ends of the box to these values.

In general, boxplots are useful for comparing the distribution of a continuous 
variable for two or more subgroups in a sample. For example, Figure 3.5, in panels B 
to D, presents the boxplots for a positively skewed, a negatively skewed, and a bimodal 
distribution. The boxplots for the positively and negatively skewed distributions 
indicate that the distributions are asymmetrical, having a long tail in one direction. The 
median in each case is no longer in the middle of the box but rather lies closer to the 
bottom or top of the box, depending on the type of skew. Extreme values (*) and 
outliers (O) can also be found lying beyond the longer tail. It is interesting that the 
boxplot for a bimodal distribution (Figure 3.5D) is not very helpful in revealing the 
shape of the distribution. Although the box for this distribution is very large compared 
to the tails and there are no outliers, its bimodal shape has become hidden.
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Boxplots are especially useful for comparing two distributions. For example, the 
boxplots for the preintervention fatigue scores for the staff-initiated intervention and 
usual-care groups are presented in Figure 3.7. These boxplots confirm our suspicion, 
based on visual inspection, that the preintervention fatigue data are negatively skewed 
for both groups: There is only one tail presented, directed toward the lower end of the 
values. Had the data been more normally distributed, two tails of equal length would 
have been presented, and the boxplots would have been similar to that in Figure 3.5A.

The lack of an upper tail for the preintervention anxiety scores in Figure 3.7 is 
understandable because there is a restricted range for this variable (14–35). For the 
staff-initiated intervention group, for example, the 75th percentile for this distribution 
is identified in the graph as the value of 35 17  and the 25th percentile as the value 25 
18 . Because 3 box-lengths is equal to 30 (3[P75

 − P25] = 3 [35 − 25] = 3 [10] = 30 and 1.5 
box-lengths is equal to 15 (1.5[P75 − P25] = 1.5[35 − 25] = 1.5[10] = 15), the extreme values 
(*) for this example would be those values that are either 65 or larger (35 + 30=65) or 
-5 or smaller (25 - 30 = -5). Outliers (O) would be 1.5 box-lengths above and below the 
upper and lower boundaries of the box, or the values of 50 (35 + 15 = 50) and 10 (25 
- 15 = 10) respectively.

No children reported scores of less than 14 or higher than 35, so there were no 
outliers. Because there were no extreme values or minor outliers for this distribution, 
there are no “*” or “O” symbols in the computer printout. The conclusion to be drawn, 
therefore, is that the distribution of these data for both groups is relatively compact, of 
low range, and not normal.

Assessing Multivariate Outliers
Although the boxplot provides useful information about univariate outliers, it does not 

tell us anything about cases that have unusual patterns of scores with respect to two or 
more variables. These multivariate outliers can be screened by computer using techniques 
made available within SPSS using its regression analyses. Because the focus of this text is 
on nonparametric statistics, we will not examine these issues here. For the interested 
reader, these techniques (e.g., examining linear relationships, use of the Mahalanobis dis-
tance, and approaches to the analyses of residuals) are described in great detail and clarity 
by Hair, Black, Babin, Anderson, and Tatham (2010); J. Stevens (2009); and Tabachnick and 
Fidell (2013) in their excellent textbooks on multivariate statistical analysis.

What to Do About Outliers
Researchers appear to have mixed feelings about outliers and what to do about 

them. Some researchers view outliers as nuisance cases, ones that do not fit expecta-
tions. Others suggest that the outliers in a study are the cases that should be examined 
most closely. Kruskal (1988), for example, argues that “miracles are the extreme outli-
ers of nonscientific life. . . . It is widely argued of outliers that investigation of the 
mechanism for outlying may be far more important than the original study that led to 
the outlier” (p. 929).
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A critical task for the researcher is to determine why outliers exist in the first place. 
Are they a result of errors of coding or measurement, or are they legitimate cases that 
possess unique characteristics with respect to one or more variables? Different 
approaches to remedying problematic outliers and reducing their influence have been 
suggested, depending on the etiology of the outlier’s presence (Hair et al., 2010; 
Johnson, 1985; Pedhazur & Schmelkin, 1991; Tabachnick & Fidell, 2013). Such techniques 
include eliminating the case altogether, reweighting or recoding the outlier to reduce 
its influence, and transforming the variable to create a more nearly normal distribution. 
It may also be useful to analyze the data both with and without the extreme data points 
to determine the extent of the outliers’ influence.

An enormous advantage of nonparametric rank-order statistics is that the ranking 
of data that occur with these statistics serves to reduce the influence of outliers because 
the data being analyzed are ranks, not actual scores. There is no “quick fix” to the 
problem of outliers, and careful attention must be paid to the consequences of a 
particular remedy. These decisions must also be duly reported in the data analyses.

DATA TRANSFORMATION CONSIDERATIONS

When a particular distribution of a variable does not meet the normality assumption, it 
is possible to transform the values of that variable to create a new variable that has a 
more nearly normal distribution. Although this process appears easily accomplished, it 
does have serious problems, particularly with regard to both finding an adequate 
transformation index that will produce a more nearly normal distribution and interpreting 
the results of such a transformation. Figure 3.3 presents several common forms of 
nonnormal distributions and some suggested transformations that might help to create 
a more nearly normal distribution for the transformed variable. Hair et al. (2010) suggest 
that for flat (platykurtic) distributions (Figure 3.3E), the most common transformation is 
the inverse (1/x). A variable that is positively skewed (Figure 3.3B) might benefit from a 
log transformation (log(x)), whereas one that is negatively skewed (Figure 3.3C) might 
be altered with a square root transformation. Leptokurtic distributions (Figure 3.3D) do 
not appear to have clearly defined transformations available in the research literature. 
Hair et al. (2010) also indicate that to achieve a noticeable effect from a transformation, 
the ratio of a variable’s mean to its standard deviation should be less than 4.0 (i.e., mean/
standard deviation < 4.0).

The goal of transforming data is to obtain a new distribution that is nearly normal 
in shape, with few outliers, and with skewness and kurtosis values near zero. It is 
important, therefore, that the researcher closely examine the distribution of the 
resulting transformation to ascertain if this goal has been achieved. Next, a careful 
interpretation of the resulting transformation needs to be made. Remember that a 
transformed variable no longer carries the original interpretation; the square root  
of preintervention fatigue is not the same as preintervention fatigue. Interpreting 
the meaning of a transformed variable is one of the most challenging tasks for the 
researcher.
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In an attempt to obtain a more nearly normal distribution, the preintervention fatigue 
variable was transformed using two suggested transformations for negatively skewed 
distributions (Figure 3.3C). First we reflected the original variable such that the scores were 
reversed (i.e., new score = (largest old score +1) − old score), and then we took the square root 
and log of this newly created variable. We are using the “reflect” because our data are negatively 
skewed. The reflect allows us to reverse code the old variable and then take a square root or a 
log of the newly created variable. We need to be extremely careful, however, in our interpretation 
of this newly created variable since the interpretation of the direction of the scoring is now 
opposite of what it was before. If, for the untransformed variable, higher scores meant greater 
fatigue, then higher scores on this transformed variable will mean lower fatigue.

Transformations of variables can be undertaken easily in SPSS for Windows through 
its Transform . . . Compute Variable command (Figure 3.8). Using the data set, hospitalized 
children with cancer-20 cases.sav, two new target variables, reflect_sqrt_fatigue_t1 and 
reflect_log_fatigue_t1, were obtained by indicating that they represent the reflect of the 
square root (and log) of the old variable, Intensity_fatigue_preintervention.

Figure 3.9 compares the newly formed reflect of the square root and log transformations 
with the original preintervention fatigue distribution. If the goal of data transformation 
is to obtain a nearly normal distribution with few outliers and with values of skewness 
and kurtosis near zero, it is apparent that while these transformations succeeded in 
lowering the skewness coefficients (Figure 3.9) to below the ±1.96 range, the shape of 
the resulting distributions is not normal. This failure to produce a more normal 
distribution may be a result of the small sample size (n = 20) and limited scale values 
(14–35). It also suggests that nonparametric statistics, which rely predominantly on the 
ranking of data, may be the approach of choice.

EXAMINING HOMOGENEITY OF VARIANCE

Another important assumption of parametric tests that compare differences between two 
or more groups is that the variances among the subgroups must be similar; that is, there 
is homogeneity of variance. A general rule of thumb is that the variance of one group 
should not be more than twice that of another. This assumption is especially important 
when groups of unequal size are being compared (Tabachnick & Fidell, 2013).

Several tests of homogeneity of variance are available in SPSS. These include Box’s 
M and the Levene test. The null hypothesis for all tests of homogeneity is that the 
variances among the groups are equal, whereas the alternative hypothesis states that 
the variances are unequal. The null hypothesis will be rejected if the obtained level of 
significance is less than the preset level of alpha (e.g., α = .05).

The descriptive statistics presented for the preintervention fatigue variable in Table 3.3 
indicate that the variance for the usual-care group was 41.39 compared to 48.89 for the 
intervention group. Because one variance is less than twice the other, it would appear that 
the homogeneity of variance assumption for preintervention fatigue has been met. The 
resulting Levene test generated from the Analyze . . . Compare Means . . . Independent 
Samples T-test command indicates that we would indeed fail to reject the null hypothesis 
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Figure 3.8 SPSS for Windows commands for transforming the negatively skewed 
fatigue variable.

A. Square Root of the Reflected Fatigue Variable

B. Log of the Reflected Fatigue Variable

Reprints Courtesy of International Business Machines Corporation,  International Business Machines Corporation 
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Figure 3.9 Results of reflect transformations of the preintervention fatigue  
variable.

A. Original Distribution

B. Transformed distribution: Reflect and Square Root  (sqrt(k +1 − x) 
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of equal variances because the significance level (.708) is considerably greater than our α 
= .05. We should be pleased with this “failure” because we can conclude that the variances 
between the groups are equal.

EVALUATING SAMPLE SIZES

Two additional issues that are important determinants of which statistic—parametric or 
nonparametric—is most appropriate to use in an analysis are the absolute size of the sample 
being used and whether there are equal numbers of subjects in the subgroups being analyzed.

Minimum Sample Size Requirements
Determining an appropriate sample size for a study is a challenging task and must be 

evaluated with each planned statistical test. Sample size consideration is also directly 
related to statistical power, or the researcher’s ability to correctly reject a null hypothesis. 
All other factors being equal (e.g., similar effect size and alpha level), the larger the sample 
size, the more likely it is that the researcher will be able to detect significant differences 
among groups. Smaller sample sizes reduce statistical power and increase the researcher’s 
chance of making a Type II error or incorrectly concluding that the null hypothesis is true.

There is no definitive guideline as to how large a large sample is or what size sample is 
too small for use with a particular parametric test. The process of determining “how large is 
large enough?” is inextricably linked to issues of statistical power, the selected level of alpha, 
and the projected size of the expected differences among the groups (i.e., the “effect size”). 

C.	 Transformed distribution: Reflect and logarithm (ln(k+1 − x)

Figure 3.9 (Continued)
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Determining an adequate sample size also needs to be focused on the requirements of specific 
statistical tests (e.g., multiple regression, t tests, and ANOVA). An “adequate” sample size also 
depends in part on the normality of the distribution of the dependent variable of interest. It 
should be noted, though, that whatever the form of the original distribution, the central limit 
theorem has shown that as the sample size increases, the sampling distribution of the mean 
approaches normality. Because the mean plays a major role in most parametric statistics, this 
characteristic of the shape of the distribution of the mean is especially important.

In their classic text on nonparametric statistics, Siegel and Castellan (1988) argued 
that “if the sample size is very small, there may be no alternative to using a nonparametric 
statistical test unless the nature of the population distribution is known exactly” (p. 35). 
Unfortunately, the authors did not state specifically what they meant by a “very small” 
sample size. Other authors have discussed implications of using parametric statistical 
tests when sample sizes are exceedingly or extremely small (Neter et al., 1993) but, 
again, these limits are not specifically defined. Where does that leave us, as researchers, 
when we are faced with a total sample size of 20 and no likelihood of increasing the 
size? Do we use parametric or nonparametric tests to analyze our data?

The answer to this question is that “It depends.” That is, the choice of a parametric or 
nonparametric test depends on the available sample, the variables’ level of measurement, 
the shape of the distributions of the variables of interest, and the researcher’s knowledge 
of the variables’ distribution in the population. In addition, the researcher needs to 
consider the number of subgroups to be examined in the analyses. For example, dividing 
our sample of 20 hospitalized children into four subgroups depending on their type of 
cancer (e.g., solid tumor, acute myeloid leukemia, lymphoma, and sarcoma) will result 
in considerably smaller sample sizes (range: 2–8) to analyze than will merely breaking 
the group down by experimental and control groups (n = 10). Moreover, parametric 
analyses of the interaction of these two variables (group by type of minor surgery) would 
be rendered impossible given the resulting small and unequal sample sizes (n = 2 or 3 
per group) within each subcategory of group by type of surgery interaction.

Assuming that we have sufficient funds to carry out this pilot study, should we 
consider increasing our sample size? Again, sample size determination is dependent on 
a number of factors (e.g., alpha, desired power, effect size, and planned statistical 
tests). Luckily, there are several computer programs available to help the researcher to 
undertake a statistical power analysis to determine the most appropriate sample size 
for most parametric and nonparametric statistical tests. These programs include 
G*Power 3 (Faul, Erdfelder, Lang, & Buchner, 2007), PASS 12 (Hintze, 2013), and IBM® 
SPSS® SamplePower (v. 3.0.1) (IBM® SPSS®, 2015).

Equal Numbers of Subjects Within Subgroups
As a general rule of thumb, it is highly desirable to have equal numbers of subjects 

within subgroups. Although this goal is attainable in experimental and quasi-experimental 
designs, it is often violated in descriptive studies because of natural selection. It is, there-
fore, a topic that cannot be avoided in health care research.

Unequal cell sizes have a differential impact on the results of a research study 
depending on the statistics selected. For example, the problems raised by unequal 
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numbers of subjects are not disastrous when using t tests or simple one-way ANOVAs, 
particularly if the condition of homogeneity of variance is met (Tabachnick & Fidell, 
2013). Serious problems regarding unequal cell sizes with or without homogeneity of 
variance arise, however, in factorial designs, such as two-way ANOVA, analysis of 
covariance (ANCOVA), multivariate analysis of variance (MANOVA), repeated-measures 
ANOVA, and multiple regression. These problems are generated because the hypotheses 
that test the main effects and interaction terms are no longer orthogonal (i.e., independent) 
when there are unequal cell sizes. Tabachnick and Fidell (2013) offer an in-depth 
discussion of both the problem of unequal cell sizes and possible solutions in their text 
on multivariate statistics. The problem of confounding of main effects for multiple factors 
when there are unequal cell sizes is present in some nonparametric analyses as well.

REPORTING TESTING ASSUMPTIONS  
AND VIOLATIONS IN A RESEARCH REPORT

The reporting of assessment of assumptions and their violations does not appear to be 
a common practice in health care research. Pett and Sehy (1996) found that less than 20% 
of the 238 randomly selected nursing research articles that they reviewed included even 
a brief discussion (i.e., a sentence or two) of the assumptions underlying the use of the 
statistical tests reported. Discussion of the formal testing of the assumptions underlying 
the statistical tests, management of violations of these assumptions, and handling of 
extreme data was also uncommon (15.5%, 14.7%, and 3.4%, respectively). Similar findings 
were reported by Gaither and Glorfeld (1983) in organizational behavior. These authors 
offer the hope that researchers do indeed consider the assumptions underlying their 
choice of statistical tests carefully but either choose not to report their findings or are 
discouraged to do so by reviewers or editors of journals.

The reporting of tests of assumptions and handling of violations does not have to 
be an arduous undertaking. A mere sentence or two would suffice. Robichaud-Ekstrand 
(1991), for example, did this very nicely in her report of responses to shower versus 
sink baths for 30 patients with myocardial infarction:

Because the distribution of the overall subjective scores was skewed, a Friedman 
test (p ≤ .05) and Wilcoxon post hoc pairwise tests (p ≤ .02) were used. Pearson 
[product moment] correlations were used to compare the skewed scores of RPE 
[ratings of perceived exertion] and the overall subjective scores with the 
normally distributed HR [heart rate] and BP [blood pressure] scores. (p. 378)

Summary

This chapter has attempted to provide the reader with some guidelines for determining 
which statistics, parametric or nonparametric, are best suited for the data at hand. Box 3.1 
presents a summary checklist of the procedures that the researcher can use to assess the 
characteristics of the data being analyzed. These steps include determining the level of 
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measurement of the variables of interest, evaluating their distributions, assessing 
homogeneity of variances, considering sample sizes, determining the statistics that are 
best suited for these data, and duly reporting the results of this investigation. It is rare that 
data collected from the “real world” are perfectly suited to the requirements of a particular 
parametric or nonparametric test. Remember, however, that the bottom line to the choice 
of most parametric statistics is the important question: Do the mean and standard 
deviation truly represent your data?

1.	 Determine the levels of measurement of the variables of interest.

2.	 Evaluate the distribution of these variables:

•• Compare the measures of central tendency for each variable
•• Determine skewness and kurtosis
•• Visually assess the distributions
•• Examine the probability plots
•• Transform the variables if necessary
•• Examine and interpret the results of the transformation

3.	 Check for homogeneity of variance.

4.	 Assess the total sample size and size of the subgroups.

5.	 Determine which statistic, parametric or nonparametric, is best suited for these data.

6.	 Report the process of evaluation and decisions in the data analysis section.

BOX 3.1  Checklist for Assessing the Characteristics of Data

TEST YOUR KNOWLEDGE

Here are some questions that should help you recall the key points of this chapter. If you find that 
you cannot recall the answers, go back to the text and reread the appropriate sections.

1.	 What are the characteristics of the four levels of measurement?

2.	 What are the levels of measurement of the following variables?

a.	 Time to wakefulness following anesthesia

 b.	 Weight of a child in pounds

 c.	 Scores on a single-item pain scale (0 = little or no pain to 10 = severe pain)

 d.	 IQ of your significant other

e.	 Staging of breast cancer (Stages I through IV)

 f.	 A list of different specialties in your profession
(Continued)
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 g.	 Level of depression as measured by a 30-item (0 = no, 1 = yes) depression scale (total score: 
0–30)

 h.	 Ethnicity of the patient

3.	 What is the meaning of skewness and kurtosis, and how would you evaluate these conditions?

4.	 What is the difference between a univariate and multivariate outlier? How would you assess 
these conditions?

5.	 What kind(s) of transformations might I consider if I had the following distribution for a 
variable:

 a.	 Positively skewed distribution

 b.	 Negatively skewed distribution

 c.	 Mesokurtic distribution

 d.	 J-shaped distribution

(Continued)

COMPUTER EXERCISES

Here is a computer exercise that should help you to put into practice that which has been discussed 
in this chapter.

1.	 Using the data set provided to you at study.sagepub.com/pett2e (use hospitalized children 
with cancer-20 cases.sav or hospitalized children with cancer-20 cases.xlsx), please undertake 
the following assessments:

a.	 Using SPSS for Windows (or another suitable statistical program), generate descriptive statistics 
including skewness and kurtosis coefficients, boxplots, and histograms for the following 
variables: age of the child in years, preintervention fatigue, and postintervention fatigue.

 b.	 In a sentence or two, describe the distributions of these three variables. Are there any 
outliers that you are concerned about?

 c.	 Which of these variables would you consider transforming? If so, what type of transformation 
would you choose?

 d.	 Undertake the transformation(s) of these variables. Rerun the descriptive statistics on these 
variables. How, if at all, did the transformation alter the shape, skewness, and kurtosis of 
your variables?

Visit study.sagepub.com/pett2e to access SAS output, SPSS datasets, SAS datasets, and SAS 
examples.

                                                                      Copyright ©2016 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute




